VISUAL THBT MOVITOR

```
TXPE TM-5-A
            AIID
NL-7352532
```


INERODUCTION

The General Blectric Monitor, Type TM-5-A, ia a epecially deaigned and constructed viaual monitor oontaining two on thode ray tubes for the simultaneous diaplay of the picture and waveform of any video algnal. The monitor providea an immediate and constant check on the content of the vidso eignal which is abeolutely neceesery for proper control ed juetments and aligment. There are four monitor models, WTMEA1, hTMSA3, hTVEAh, and ML-7352532.

Moiel. ITMSAJ is ueed in all the Camern Control Consoles. Model hTMSAI is used in the IIne Monitor Coneole. These two monitora differ in that Model hPMSAL has additional annunoiator type lighta located in a ror at the top of the monitor panel to indicate the camera channel being brondcast.

Modela hTM5Ah and ML-7352532 are Callbrating typemonitorm which are uaed In the Master Monitor Coneole, the Cue Monitor Console, the Master Control Console and the Tranamitter Console. The difference between hIMSAI or LTVSAJ and LMMSAh ie in the wave form ofrouite. Model liTVSAl or LTMSAS diaplay a dual trace at the vertical and hortzontal aveep ratea. Model lTM5At diaplays a aingle trace wave form and includes vave form calibrating and measuring ofrouita. The ploture oircuita aro the aume in both typea.

This inatruotion book covore the monitors with the calibrating type of vave form ofrouita, namely hIMSAh and ML-7352532. For deacriptions of the dual trace type monitore, nee Inotruction Book BBI-3100.

DESCRIPIIO:

1. GRNERAI.

The monitor is rectangular in shape and mounted on Inclined olidea and guides, vitia steel tapes and counterbalancing apringe for oafoty and
ease of operation. Two release buttons on each side of tho front panel unlock the monitor from the closed position. Tho unit consists of a vaveform monitor chassis and controls on the loft side, a pieture nonitor chassis and controls on the right and two high voltage power supplies nounted in the rear. These supply high-voltage potentials to the two cathode-ray tubes. $\lambda 11$ other operating powor comes from associated rack equipment. Both high-voltage powor supplios aro interlocked by a switch located bohind the top center of eaoh monitor front panel. Motal shitelds around the power supplies and suitable protection of other parts prevent accidental contact with high voltage in the event of interlock failure when the monitor is extended. Operating controls for sdjusting the plicture raster and waveforn deflections are on the front panol. The cathode-ray tubes are aluminum backed. Each tube is faced againot a rubber nask and a shatterproof window.

caution

Be extremely careful when handiing these tubee, as they implodo with violence when broken. Be sure to vear safoty glasses and gloves.

2. ELBCTRICAL.

A. Pleture Monitor

The pioture monitor conaists of the follonding circuils:
(1) Video Amplifior

Tho vidoo amplifior consiste of three 6AC7's, two 6AGF's and one 6SL? in cascade with shumt compensation oircuits for a five-megacycle bandwidth and d-a insortion (V1606) for low-frequency response correction, as wall as an automatic means of controlling the background level. R1672 (BACKGROUND) in tho front panal control for setting the background level. R1609 (CONTRAST) is the panal control vilch achíeves contrast by varying the vidoo gain. Coila Ii.601, 12602, and 12603 are for high-frequency componsation. The output is a black nogative signal to the control grid of the pioture cathode-ray tube, V1638.

If, for any reason, the amplifier is out of aligjuent, adjust coils 11601,11602 , and 12.603 for a 5 -megacyole Mat bandiddth, using standerd video amplifior alignment procedure.
(2) Picture Monitor Yortical Sweeps

A sartooth vertical deflection current is developed in the vertical deflection chain in the follording ranner. V 607 amplifles a poaitive vertionl aync pulse which triggers V1608, a 6587 miltivibrator. The output of V1608 controls the sawtooth generating oircuit consisting of V1609, the firat part of V1610, I11715, and C1630B. The first part of V1610

Is a constant current tube charging Cl630B at a oteady rate to provide the sawtooth. V2609 conducts only during the trigger Irom the multivibrator, discharging Cl630B. FI715 develops a pulse voltage during the discharge which is necessary for a fast nyback. The second half of V1610 is cathode coupled to the output stages. In the cathode of V1610 is a resistor-condenser network which superimposes a parabola shape on the sawtooth to compensate for the non-linearity resulting from the leakage reactance in the output transforner. N1611 is a voltage amplifier driving V1612, the power output stage.

If for any reason the verticnl sweops need adjusting, proceed in the following manner:
A. Put horizontal bars, auch as the 2.1-kilocyole bars from the pulse generator, on the vidoo input and adjuet the brightnoes and pioture contrast so that both bars and vertical retrace lines are visable.

b. Turn Bl651 (VERT PULSE WIDTH) completely clockwise.

c. Adjuet FIL661 (VERT PARABOLA) so that bars are spaced equally over the bottom three-quarters of the sweep.
d. Adjust RIM15 (VERTICAL PULSE AMPLTTUDE CONTPOL) so that the bars in the top quarter of the swesp have the same spacing as in the lower bars. Correct any tendency to fold or stretch in the top part of the pieture with this control.
e. If the vertical amplitude is not sufficient to swoep the entire tubo, back off R1651. VEET PULSE WIDTH (turn counterclockise) and rotune Fl 661 Por linearity. Repeat until linearity and anplitude are satisfactory, keeping the vertical pulse xddth as short (clockolse) as possible to insure a last retrace.

1. Different deflection yokes and transformers require different amounts of parabola. Sometimes this variation is enough to overdrive N 2611 causing a squashing of the vertical sweep which cannot be corrected by varying R1715. In this case change the value of R1714 to vary the bias on V1611 until a satiafactory value is found which will permit RL 715 to perform as it should. Pl 714 is set at the factory and should not have to be readjusted uniens a new yoke and trensforner are installed.
(3) Ploturo Monitor Horizontal Sweepe

The horizontal deflection oircuit develops the sawtooth waveform needed for horizontal sweep and retrace. In operation, it is similar to the vertical sweep, except that the output utilizes a pair of 6BG6G tubes (V1617 and V1618) in parallal to furntsh the power for the horisontal sweep. Linearity is obtained by the feedback network $\mathrm{Rl}_{174} 4$, R2693, C1650, C1654, Pll723, and C1649 comnected from the output transiomer to the plate of N615.

If for any reason the horizontal sweeps need adjusting, proceed as follows:
a. Put vertical bars from a bar generator on the video
input.
b. Turn Rl685 (HORIZ PULSS WIDTH) completely clocknlse.
c. Adjuot F 1704 and R1693 (hORIZ LDN 1 and 2) so that bars are spaced equally over the tube.
d. Readjust RI685 (HORIZ PUTSE WIDTH) as needed to obtain linearity at the left edge of the pioturo, koeping the control as far clockwise as possible.
e. Too much feedhack, caused by incorreot sottings of R1704 and R1693, will cause the system to oscillate or "ring" at the leit edge of the picture. The correct satting of these potentioneters is just before oscillation starts.
f. Check the horizontal arplitude to see that it is sufficient; if not, realign the potentioneters until amplitude is sufficient uithout ssorificing linearity.
g. Better linearity is sometimes obtained by changing the value of H 713 , which changes the wave shape of the feedback voltage. Optimum value of this resistor is picked at the factory and should not require changing unless a new yoke is instanled.
(4) Vertical and Horizontal Centering Circuits

Both vertical and horizontal centering circuits have controls so that the value of current through the winding of the centering yoke can be varied. Voltage for this operation is taken from the $\$ 400$ volt supply.
(5) High Voltage OArcuits

High voltage for tho pioture tube eloments comos from a voltage doubler using two hale-nave rectifiers, V16141 and V1642, located in the rear of the monitor assembly. Divider circuita are conneoted aoross the output of this rectirlier to obtain the propor voltages for the oathoderay tube elements from a common source. Exception is taken in the case of the first anode of the picture tube which is suppiled from the 400 volt bus. This connection is used to prevent burning of the fluourescent soreen during application and removal of power to the nonitor.
(6) Cathode Rey Focusing and Deflection Components

Three nagnetic units placed around the neck of the 10FP4 cathode ray tube form what is known as the yoke. Looking at them from the front or the tube they consist of the sweep deflection yoke in its shield can, the centering yoke and the focus coil. The focus unit is rade up
of a permanent ragnet ring and an electronagnetic coil. The current passes through the coil in the direction which makes the permanent and the electromagnetic fields aid each other.

CAUTIOM

Handle tha focus unit carefilly. Dropping or hitting the magnet may demagnotize it.
(7) Tube Adjustments

When a ploture tube is flrst installed, a better focused, squarer picture may be obtained by the following method.

CAUTION

If these adjustments are rade with power on, do not touch the 8KV lead to the 10FP4.
a. Renove the two 6BC6 tubes and the 6AS70 aweep tubes, (V1617, N1618 and V1612). Make sure that the brightnese control is turned down to provent burning a spot in the tube.
b. Loosen the wing nuts and the two Phillips head screws holding the centering and foous units.
c. Rotate the centering yoke until the spot moves horizontally when the horizontal centering control is turned. Tighten the Phillips screws in their tapped holes. Do not tighten the sing nuts.
d. Set both the hordizontal and vertical centering pots to the middle of their range and move the focua aasembly until the spot is as close to the center of the tube face as possible. Tighten the xding nuts.
e. Repiace sweep tubes and spresd the raster to its normal size by adjusting the horizontal and vertical coll auplitude controls.
f. Loosen the two studs holding the deflection coll and rotate it until the raster sides are parallel with the side of the mask. If the sides of the raster are not straight Iines, move the deflection coil horizontally or vartically to minimize the curving. A slight adjustment of the focus cofl will also help. Tighten the studs.
(8) Focus Adjustment

Two 10 vatt resistors $\# 2897$ and R1898 are included in the picture monitor focus ofrouit. One or both may be disconnected in test in order to adjust the focus control in the center range. If a new focus coil is inatalled, a new combination of these resistors nay be necessary for proper foous centering, otherdise thoy should not be touched.

B. haveform Monitor

The waveform monitor is located in the left-hand section of the visual test monitor. It inciudes a video amplifier circuit in the bottom part of the chassis, a horizontal sweep circuit along the rear, a synchronizing separator at the top of the chassis, and a calibrating pulso generator and mixer in the oenter. It operates from two regulated inputs: 300 volts, 190 ma and 350 to 400 voits, 240 ma . In addition, -105 volts is used for bias. 6.3 volts from the transfomers in the rear of the monitor supplies the fllament power. The waveform circuits operate a SCP1A cathode-ray tube which has $4-\mathrm{kv}$ accelerating voltage, erranged for 2 kv above and bolow ground.
(1) Video Amplifier

The video amplifier consists of seven stages having shint compensation for high frequencles and adjustable tine-constant compensation for low frequencies. Tho amplifior is essentially flat to 3 ac , and drops alowiy at higher frequencies. It produces negligible phase shift on a 60 cyole square wave. The input level is 0.2 to 0.5 volt peak-to-peak. Fertical deflection up to four inches is pernissible.

The first stage consists of two $687 I_{15}$ (V4781 and V/782), each having 1,800 -ohm unbypassed cathodo resistors and a common plate impedance. Thay act as uixors to conbine the incoming video signal with a calibration pulse. The video foeds into V4781, and the pulses into VL782. With small signals and high degeneration, there is negigible amplitude distortion.

The second stage, V/4701, drives a low-impedance gain control, 24712. The compensation for loss of low frequencies in the coupling circuit lo adjustable by R4706.

V4705 is a phase inverter, which feeds the two 807ts in push-pull. V4706 inserts d-c on the grids of the 8071 l by rectifying on the syno poaks of the oignal. Tho diacharge timn constants of these ofrcuits are long, permitting low-frequency distortion and hum which ocours on the Incoaing signal to be seen on the scope. A switch, S4751, on the front panel is available to disengage the $\mathrm{d}-\mathrm{c}$ insertion circuits.

The soreen supply for the BO7's is a VRI50, tube, Y4710, which aotn as a sorios regulator. $V 4783$ supplies soreen voltage for the nixer tubes. Another VR1 50 tube, 74709 , regulates screen voltage for the next three stages.

(2) Horizontal Sweeps

Either of two horizontal sweep speeds can be selected by panal switch $\$ 4901$. For vertical wavelorms, there is a 30 -cps aweep showing two fields, and for horizontal waveforms there is a 7.875 -kcs sweep ahowing two lines. The driving pulses come from the vertical and horizontal picture sweep muitivibrators and are seleotod by the owitob, Si,901. An Eccles-Jordan froquency-halving circuit, $V 4901$, develops the
actual sweep frequencies. Half of V4902 serves as a discharge tabe for developing sartooth voltages agross Clis15 and CL92l. The double triode 6SN7-GT (Vh903) is a oathode-coupled inverter having push-pul2 output from Its two plates.
(3) Synchronizing Separator

When the SMNC SEITCF, SL851, is set to PIC or WF, VL851 and VL855 amplify and deliver a sync-positive video 81 gnal to VL 852 , which is a 6AC7 olipper with lom-screen voltage for reducing its cut-off blas. The clippor removes the video, leavine only symehroaising signals. VL853 elips the peaks of tho syno pulaes on ita grid and then separates the vertical and horizontal pulses. The vertical pulnoz are developed by integration soross the condenser, $\mathrm{C4} 874$ and CL 875 , and again acroes $\mathrm{cL8} 86$ on one grid of the output cathode coupler, Vh85if: The horizontal pulses are taken from the plate circuit of VL853 by differentiation through CL879 into the other grid of VL85L4. The cathode output of Vi,B5h feeds to the pioture monitor chassis after the vertical pulses have been integrated a third time across Cli867, to synchronize the pioture aweep aultivibrators.

A 10 K potentioneter, R5062, labelled SMC SEPARATOR ADJUST is installed as variable cathode degeneration for one stage of the syme separator. Its function is to allow the monitor to synchronize on composite signals of widely different amplitudes and sync percentages. Once set up correctly, it should not need readjustment during operation,

To adjust initially, appiy a conposite monoscope or studio camera signal of the input level expected in operation, but with a lower than nornal oync percentage, approxinately 15 percent sync. With the noritor oporating, turn R5062 ciockrise until the monitor sweeps refuse to synohronise. Turn it oounterclockrise untll the sweeps again refuse to synchronise. Set the control in tho middle of this range. Check the setting by going from black 11 gnnle to white oigmale and over the range of sync percentages expected.

If either V4B51 or Wh855 is changed, it may be necesaary to readjust this eontrol.
(4) Cafibration Cirouits

There are four positions on the calfuration seleotor switch These have the functions outiinec belows

VID This position permits only video in the vertical deflection amplitier.

STME Sine position substitutes for the video at the input of the amplifier, a 60 -cps sine calibration wave taken from the power Iine and callitrated to read directay on the scale of the calibration Helipot, Ru8il, in peak-to-peak volts.

WHT Here the incoming video is mixed with a white extending pulse which occurs during the vertical blanking interval at 60 cps . The amplitude can be adjusted by Rl611. This pulse creates a marker by pushing a block of serrations in the white direction from sync peaks.

BLK Selecting BLK, will mix a black extending pulse nith the incoaing video, in the Visual Text Xonitor, MI-735253201, which is uned in the Franemitter Console, TC-I3-A. This occurs during evory othor vertical blanking interval and Is triggered from the zero r-f roforenco pulse appearing in the demodulated output of an RCA wM. $3-\AA$ Convertor, or other type of keyed r-f demodulator. The amplitude of this pulse is also adjusted by Rli811. This position has no function in Monitor Kodel IMMSALi.

The absolute anplitudes of these pulsen are not directiy indicated, but their relative amplitudes can be read on the scale of RL811 with considerable precision. The pulses are generated by the "stop-and-go" multivibrator, V4785. When producing a white pulse, the multivibrator is triggered through half or vh784 by the picture monitor vertical sweep. When producing a black extending pulse, which is used only in $\mathrm{MI}-735253201$ at Transmitter Moriltor, the multivibrator, V4785, is triggered through Vh 784 by the zero $r=f$ level. In order to get the 30 -cycle zero $\mathrm{r}-\mathrm{f}$ signel from the video output of the $m \mathrm{man}^{3}-\mathrm{A}$, the aignal with white positive is fed to clipper 74784 , which outs off all video and synchronizing pulses and then triggers the multivibrator with the readining soro $r-f$ pulse. Thus the black calibration pulse starte right after the boginning of the sero $r-f$ algnal. With elther typa of trigger, the output of the "stop-and-gon multivibrator is connected to the second grid of V4784, which develops calibrating pulses of opposite polarity on its plate and cathode. The proper polarity is selected by Sh781 for each switch position. Konitor Model LTM5AL does not require the BIK pulse and so the amplifier tube VL786 is omitted.

IHSTAMLATION

The unit is shipped mounted in a console. It has been thoroughly teatod and inspected. All interconnection wiring is terminated at the master teminal boardo located behind the access door of the console.

CAUTION

Do not extend the nonitor from the console without first securing the console to the floor.

1. CONTHOL COHSOIE CATHOIE-RAY TUBES, Both top and bottom tubes can be installed with the monitor in place, fully extended. With the installation of the cathode-ray tubes, the unit is ready for adjustments and use.

CAUTION

When unpacking, handling, and 1nstalling the cathode-ray tubes, wear gloves and a face mask. These tubes can implode with suffioiont violence to cauee severe cuta and Iscerations.
A. The safety-glass ring masks of sponge rubber and the tube shields are shipped in position in the monitor. To install the large eathode-ray tube, remove the ahield and supporting yoke by loosening the four Phillipshead screvs in the yoke assembly.
B. Remove the tube from its container, and place it face down on the table.
C. Clean the tube face and both sides of the safety glass window. This should be done regularly as dust will cut down the contrast ratio considerably.
D. Slide the shield and the yoke over the neck of the tube as far as it oill go, making sure that the anode lires up with the opening in the side of the shield. The anode connection is the electritoal connection on the sido of tho tube.
E. Loosen two sorews attsching upper front interlock and siip interlock out of position. Remove the top front tubes in the monitor. Otherwis?, they will interfere with looating the tube in place. Hold the tube in the right hand by tha neck, alloning the yoke assembly to rest against the bulb proper, and slide the ilngers of the free hand between the shield and the tube. If the tube is kept in a horizontal position, it can be lowered easily into its oradle. Note that some adjustmont of the ioous and deflection eystom nay be necessary to square the raster properly.
F.* With the tube assembly properly positioned (the tube should be full forward against the face mssk), secure the sorews that fasten the yoke assombly to the yoke carrier and the shield sorev. Notlce that the bracket sorew holes are elongated to periit some adjustament of the tube to proper position.
0. Nake all necessary electrical connections (including socket and anode), and roplaco tubea removed to facilitate installation.
H. The snaller cathode-ray tube is ingtalled from beneath the monitor in a similar manner.

[^0]OPYRAATION
By following the steps listed below, the monitor can be adjusted for operation. Once properly set up, it requires litile attention. The waveform and picture controls are listed separately to simplify the procedure. Do not trist or turn controls mitil power has been appilod, sinoo each monitor has beon faotory adjusted with all controlo being left in their proper position. These may have been disturbed In shipping, however. If the folloming procedure does not set up a proper raster, refer to the section On MATNIEMANCE.

1. OPERATINO ADJUSTuENTS

A. Pioture Controls
(1) A few seconds after powor has been applied, a raster should appear on the plotare screen. Adjust its Intensity with the background control so that it is clear.
(2) Adjust the horizontal and vertical speed controls to synchronize the scanning frames with the pulses coming from the pulse generator. When these are properly adjustad, all movement (horizontal and vertical) across the screen will stop. Proper timing provider for good intorlace and a resultant oeseation of all motion.
(3) Use the focus control to get the best electrical focus.
(4) The vertical and horisontal amplitude controls adjust the screen flyage for proper size.
(5) The contrast control adjusts the video amplifier gain to deternine the range of brightness. If a specific video voltage level is wanted for tranmisaion, it has to be adjusted with the oontrast control on that partioular canera channel control monitor desk.
B. Waveform Controls
(2) Use the INTEMSITY control to adjust the brightness of the trace,
(2) Adjust the electrical focus with the Focus controi until the image is sharply defined.
(3) Uoo both the VEAT CEAT control and the BORZ CBNT control to adjust the position of the trace.
(4) HORZ AMP oontrol arifusts the width of the display.
(5) SIEEP AUP adjusts the size of the aweep.
(6) SNNC SWITCH. SL851 selects any of four types of synchronizing for the visual test monitor: (a) composite picture signal, (b) composite waveform signal, (o) separate super sync, (d) separate external horizontal and vertical sync pulses. This smitch is also located on other monitors, but instead of (b) composite waveform signal, it is OFF. Synchronizing is usually done from the composita picture oignal, unleas for somo reason that aignal is inferior to the signal on the waveform acope. The aignal from the $w=13 \mathrm{~A}$ demodulator cannot be used for synchronising if the $x-f$ zero keyer is turned on. This causes the sync pulses to disappear during the keying pulse, and the sweeps to ran free for that period. The third or fourth positions are useful if there is a local pulse generator to supply those signals. Then switching from composite or super sync to external separate sync, the horizontal centering will have to be adjusted, becamse the eweops are triggared on the leading edge of the horizontal sync pulses for composita or super oync and on the loading edge of the pedestal for external sync. The raster aust be shlfted to the left by the equivalent width of the front porch.
(7) STESP SPBED STITCH. SL901 permits selection of a waveform monitor aweep frequency of either half-horizontal or half-vertical scanning frequenoies. Viewed on the scope, the foraer (about 7.8 k 1100 yoles) exhibits two sets of line traces side-by-oide, with a trace of the horizontal syno pulse in the center. The latter (30 cyoles) shows two sets of field traces separated in the center by a trace of the vertical pulse.
(8) CALIB SWITCH. The calib awitch is a four-position switch, S4761, for selecting the following irputs to the raveform amplifier:
a. Videc only.
b. 60 -oycle sine wave calibration oniy (substituted for the vidoo), which is adjustable by moans of the CALIBPATION PUSE AMPL control up to 3 rolts peak-to-peak. Its actual amplitude is given by the scale reading on the control within the percent deviation of the line voltage from 120 volts fms. Three hundred on the scale equals 3 volts peak-to-peak.
c. White-extending 60 -cycle pulse tined to fall within the vertical blanking interval and mixed with the video signal to avoid orrora due to differences betwoon the average value of the vidoo and the calibration puleo. Tho absolute amplitude of the pulse is not calibrated, but relative heights are given accurately by the scale readings on the CALIERATION PULSE AMPL control.
d_{4} Black-extending 30 -cyole pulses triggered from the zero r-f pulses in the output of the $W \mathbb{M}-13 A$ Denodulator. These pulses, Iike the white-extending pulses, oan be adjusted in amplitude and thelr rolative hel ghts accurately deternined by the oonle roedings on the CALIBRATION PULSE AIPL control.
(9) DC INSERTION. The d-c insertion is a two-position ON-OFF switch, SL701. D-c insertion should be OH when a television picture signal is connected to the amplifier. This causes the sync peaks to remain at the same position on the scope, independent of variations in the average value of the signal.
(10) CALIBRATION PULSE AMPLTTUDE. This is a three-turn Helipot, Plio11, with 0.1 percont Iinearity of resistance as against rotation. It adjusts the level of the callbration pulses fed into the apilifier. It can be set for direct reading by adjusting it to a scale reading of 200 and sotting the CALTERATION REFEAPACE control so that the pulse in the kaveform display tube matches the naximum peak-to-peak excuraion of the oignal. The ratio of the reading on the scale of the callbration control for any other eatting gives a diroct ratio of the height of the callbrated pulso when matohing any othor part of the otgnal to the established peak-to-peak raference level. When the prise is then oet to match any other part of the sicnal, the ratio of the new scalo roading to 200 represents the true voltage ratio of the part of the signal to its peak-to-peak value. Thus the scale markings become direct reading. The minimun resistance from the rim of the potentiometer to ground may not quite be zero. To correct for this, the minimum scale reading may be set up proportionally usually about three small divisions.
(11) CALIBRATION REFERENCE. Potentiometer, RL812, is used to adjust the CAITBRATION PUISE AMPL control to some convenient scale reading (200 or 100) to represent 100 percent of peak-to-peak amplitude. There is a dial locking device to prevent accidental changes of its settings.
(12) ADDITIONAL SWITCHES, (The following two switches are mounted only on Monitor ML-7352532a1 in the Tranamitter Console, Type TC-13-h, and are not required for Nonitor Kodel LTM5N4.
A. R-F Keyer, S4991 turns the sero keyer on or off. (The zoro koyor la built into the Wavoform Demodulator, Type mi-13A.) The $r=1$ keyer is usually conneoted in series with the corrosponding switch in the Demodulator Power Supply, MI-8262. Tho lattor owitch should be placed in the "OFF" position (closed) to pernit control at the console.
be Crystal Detector. The crystal detector turns the wideband crystal detector on or ofi. It is built into the mu-13A Demodulator. Sh992 in also wired in series with the corresponding switch in the power Supply, MI-8262, and it ahould be left in the TEST position to pernit control at the console. This detector is intended for exhibiting through the $\mathrm{W}=-13 \mathrm{~A}$, the detected envelope of the transmitter response, to a video sweep aignal fed through the monitor.

MATMTBNANCE

1. Pabyenitive

Regular inepection of capacitors, tube sockets, resistors and tubes for noisy or intermittent oporation is reoomended. Check transformers for abnormal t.emperature rise.

Keop the unit clean. Use an air hose to remove dust. The high-voltage bushings in the high-loltage supply must be kept clean. Keep the safety glass window clean.

The unit requires no special mechanical maintenance beyond the nomal care eiven studio furniture. Shonld the monitor become difficult to pull out, use a little cup grease and ofl on the slide rollers to get smoother and easier operation. Also, oil sprine tapes by shooting oil directly into the spring housing.

On either side of the monitor are two latches operated by buttone actuated from the front of the monitor. Each latch can be adjusted by loosening the associated screws, retighteming them when the latoh is properly posittioned.

To resove the monitor from tho cabinot, axtend it fully, being careful to unhook the two spring tapes so that thay do not wodge and break. Remove the two $10-32$ sorewe on the undervide that pull the slide carriage forward with it and disconnect the cable; the monitor then lifts out.
2. COAREOTIVE
A. Monitor Chassis Alignment

If the front panel of the monitor fails to seat properiy, reallen it as follows:
(1) Re-adjust the position of the ball bearing roller guides on both sides of the top of the nonitor and relocate then so that the front panel is properly centered in the opening.
(2) Readjust front panel screns. Clearance for a $1 / 16$-inch adjustment has been provided in the nonitor chassis.
(3) If steps 1 and 2 are not surficient, readjust the rumners by first removing the pin screws and then the runner screns. Hew holes for the pin screws mill have to be dril1ed and tapped after the rumners have been relocated.

B. Afplifier Gain

The gain of the picture and waveform video amplifiers is adjusted by means of the contrast and vertical deflection controls on the front panel. The maximun gain of the amplifiers can be measured as follows:
(1) If available, apply a picture signal to the nonitor in put. Otherwise use a sine wave, prererably of an audio frequency, obtainable from a signal generator and applied to the video Input terninal of the montor. The peak-to-peak amplitude of the signal should not exceed O.I volt.
(2) Turn the contrast and vertical defleotion controls to maximum clockise position,
(3) Measure input and output voltage levels using a vacuum tube voltmeter or an oscilloscope with calibrating means. If a voltneter is used, an oscilloscope should also be used to make sure that excessive distortion does not affeot the readinge.
C. Waveform MomLtor Galn

The approximate gains of the various stages are given below as an aid to isolating a tube or circuit that may be causing troublo.

Tube	Stage Gain	Gain Through Stage
4781	0.5	0.5
4701	2	1.0
4702	4	4.0
4703	4	16.0
4704	5	80.0
4705	0.75	60.0
$4707 \& 4708$	$10(1$ tube to ground) 600	

D. Picture Monitor Gain

The over-all pictiare monitor gain as measured to V1638 pin 2 should be about 400 . The upproxinate gains of the various stages ares

Tube	Ssage Gain	Gain Through State
$V 1601$	1.25	1.25
$V 1602$	8	10
$V 1603$	4	40
$V 604$	10	400
$V 1605$	1	400

E. Picture Amplifier High-Frequency Response.

The high-frequency response of the video amplifier in the picture monitor can be checked by use of either a videc sweep oscillator and osollloscope, or a sine wave oscillator and vacuum tube voltmeter.
(1) Comnect the indicating device or detector to the output of the amplifior. N 605 pin 5 can be used for the pleture monltor. Care should be taken to prevent adding more than about 5 miorofarads to the output-circuit capacity. A series capacitor of about 5 mnfd can be used to feed the indicating device, thus providing a capacity divider of constant ratio over the desired frequency range.
(2) Connect the oscillator Input through a capacitor of 0,01 to 0.1 microfarad to the varlous grids, starting near the output and working back towards the input, adjusting the conpensating coils for each stage to give response at $5,0 \mathrm{mc}$ equal to that at 0.5 mc . Adjust the following listed coils while the partner twbe and pin is connected.

Cornect Input to Adjust

Pioture Monitor

V1601	Pin L
V1603	Pin L
V1602	Pin L
L 1603	
I 1602	
L 1601	

The input level should be adjusted from stage to stage in order to keep the output at a suitable level.

If any trouble is encountered in adjusting the rosponse, chook tubes and values of plate load resistors.
F. Picture Amplifier Low-Frequency Responsc.

The low-frequency response of the amplifier can be checked by means of a 60 -cycle pulse or a ploture aignal.
(2) Apply the pulse or other test aignal to the imput of the monitor.
(2) Observe the tilt of the wave at the grids of the various atagea by means of oscilloscope. Considerable tilt is allowable, since the d-c insertion diodes at the end of the amplifiers w1ll correct it when operating on a ploture signal containing both horizontal and vertical blanking. If very excessive tilt ocours, chook tabas, grid reaistors, coupling capacitors and bypass capacitors for proper value.
(3) Cormect she output of the amplifler to be tested directly to the plates of an oscilloscope. If a picture sienal is now applied to the input, the blanking or black line should be flat. If the amplifler tilt is not excessive but the output is still tilted, check the d-c insertion tabe, V1606, and the asoociated resistors and capacitors.
Q. Deflection Linearity

The pictura monitor IInearity way be checked and adjusted as direoted under the Electrical Desoription section.

He Ali gument of Waverorm Monitor Video Amplifier.
There are two common methods of adjusting the high-froquenoy responses
(1) Connoct a vidoo oneep gonerator to the amplifior imput TBL701~3 and observe the sweep waveform at successive points through the amplifier with a wide-range oscilloscope or with a suitable detector and an ordinary osci110scope. signal anplitude at various points with a vacuum to the voinput, and observe the oscilloscope.

To adjust the Iow-irequency compensation of the amplifiar, conneot to the input a square wavo gonorator having approximately $1 / 4$ volt peak-to-peak signal at $50-100 \mathrm{cps}$. Observe the signal at various points in the amplifier with a scope having good 10π-frequenvy response. Set the calibration switch to VID, position H. Connect the scope to the cathode of Xh701 (temporarily disconneoting the jumper around BL 403) or to the grid of XLi701. Adjust RLY 87 for optimum flatness of the pulse and RL 705 for the squarest leading edge. Do not check the aignal on the cathode of V4702, since there is normally lowfrequency distortion at this point. Looking at the cathode of V4703, adjust RL706 for tho flateat pulee. Looling successively on the cathodes of VL7OL
 best shaped square rave. looking at the output of the amplifier on the cathoderay tube, R1637, readjust RL706 for optimum squareness of the wave,

To adjust high-frequency response, first be sure that $10 w-$ frequency compensation has been adjusted. See provious paragraph. Sot the calibration seloctor switch to VID, position L, which grounds the grid of the callbration pulse mixer, With an input level of approximately $1 / 4$ volt peak-to-peak, observe the signal on the cathode of Xi701 (remove the lead Jumper shorting RLi703 for video amplifier tests. After aligrment, reconnect the Jumper from cathode to ground for nornal gain from this stage) or the high side of Rlifl2 and adjust compensating coil, Lil781, to give a Ilat response of 3 mc . Connect scope successively to cathodes X4703, 2h70h, and Xi705, and similarly adjust compensating coils LLTO1, L4702, and Lh703. Look at the cathode of the stage following the coll. Take care that there are no peaks in the frequency characteristics. It should never rise above the middle range signal amplitude (about. 0.5 mc). The adjustrent of the final plate compensating coils, 14705 and L 4706 should be done by observing the aignal on the w-f tube with a suitable syne signal fed into the horizontal smeop. Short each plate to ground with a capacitor while adjusting the other coll.
I. Trouble Shooting Charts

The following trouble charts will aid the operator in maintaining the unit at its maxinum efficionicy.
(1) Picture Monitor
Symptam
a. Absence of deflection and

video voltages. \quad| Puse Fi601, located in front panel Lo0 volts, |
| :--- |

h. Inability to horizontally synchronize within range of control.

1. Inability to synohronize vertically within range of control.
2. Poor resolving power of picture monitor.
k. Inadequate picture brilliance.

Chock synchronizing signal at pin L of V1613. Cheok values of R1680, R168 $4 \quad$ Check R1686, R1679, R1678, R1685, incoming C1645, and C164山

Check synohronizing signal) at pin 4 of V1607. Check) level values of R1644, R1645 and R1650, R1651, R1653, \quad percent R1625 and c1626. sync.

Check foous. Check frequency response of picture monitor video chain tubes V1601 through V1606. Check V1638 for poor spot size or shape.

Check V1638 voltages.
Check gain of amplifier chain V1601 through V1606. Cheok V1638 for low enission or poor soreen condition by substitution.

1. Smear in pioture.

If cortain that origin is within the monitor, check V160S as well as the values of C1616 and R1638. Check termination resistors with an ohm meter.
m. White folloning blak picture corsponents.
n. Bun in pioture (represented as single synchronous horizontal bar in picture or 60 aycle curves on the vertical edge of the raster.)

Chock allgraient of stiuges VI 601 to V1605, inclusive.

Cheok regulation of associated power supplies.
(2) Waveform Monitor, Yodels Lu45A4 and Mm-735253201
a. No deflection on 5 inoh tube.
b. No anode voltage on 5 inch tube.
c. Inadequato vertical deflection with speoified itput level.

Chock F4701 and FLTO2.
Cheok F1604.

Chock stage gain of V4701 thru V4708 and V4781 n ith 5 frequency less than I megacyole. Replace tubes if gain is low.

3. SPSCIAL ADJUSTMENTS

A precentering ring, 12613, which consists of a permanent magnet ring mounted on a sleave is furnished with same monitors to eliminate distorifion in the picture tube raster. If included with the isonitor the precentering ring will be shipped attached to the deflection yoke. After the pioture tabe has been properiy installed, renove the base sooket and slip the ring over the tube base. It can face either direction. Reattach the base socket. There are no electrical connections.

The ring should be looated approximately one half to three quarters of an inch behind the foous coil. With the monitor on, alternately rotate the coll and use the centering controls to bring the picture back to the center of the screen. The correct ring position is that which produces the least gecmetric distortion (opposite sides of equal length and with minimum bowing) yet leaves the centering controls with adequate operating range to center a composite picture. The best ring position is where both centering control and diatortion are satiafactory.

[^0]: *See Special Adjustments in MAINTBNANCE section.

