

SERVICE NOTES-Model 817

THE PYE MODEL 817 TELEVISION RECEIVER

Issued
November, 193^{8}

Power Consumption : 110 watts. Picture Size: $4^{\prime \prime} \times 33^{\prime \prime}$.

CONTENTS

SUMMARY OF OPERATION

The following summary is intended mainly as a brief reminder of the essential functions of the various controls and circuits.

It follows the path of the signal step by step from the aerial to the cathode ray tube screen and the loudspeaker.

The Technical Specification given elsewhere in these notes gives a full and detailed description of the operation of each unit.

VISION

I. Vision signal picked up by dipole aerial and fed into the control grid circuit of the first R.F. pentode (V_{I}) in the Vision Channel.
2. The vision signal is amplified throughout three T.R.F. stages with inductive coupling. The gain of the first two T.R.F. stages is controlled by the potentiometer Rio (vision sensitivity control), which varies the negative voltage applied to the suppressor grids of the valves V1 and V2.
3. The output from V_{3} is fed to a full wave rectification or detector circuit, incorporating two diodes, and from this rectification circuit the output is fed to both the control grid of the C.R. tube, for varying the intensity of the electron beam, and the line and frame synch. separator valve V1I, for line and frame time base synchronisation.
4. The line and frame synch. separator valve $\mathrm{V}_{\text {II }}$ filters the line and frame synchronising pulses from the Vision Channel output applied to its control grid circuit. Line synchronising pulses are derived from the anode of this valve, while the frame pulses are derived from the suppressor grid. The line pulses are fed by capacity coupling to the oscillatory circuit of the line time base thus synchronising the line time base with the transmitter. The frame pulses are fed from the suppressor grid of VII via inductive coupling to the oscillator circuit in the frame time base, thus synchronising the frame time base to the transmitter. Both the line and frame synch. separator circuits are controlled by potentiometer R_{27} (line and frame synch. separator bias control).
5. A dual purpose valve V_{12} is fitted in the Line Time Base. The triode section of the valve functions as a blocking oscillator and produces saw tooth oscillations of line frequency. These saw tooth oscillations are amplified by the tetrode section of the valve and are fed via T_{2} to the line scan deflector coils L22 and L23. Jine frequency is controlled by means of the variable resistor R38 (line hold control) whilst amplitude control is obtained by means of the potentiometer R31 (line amplitude control). Line linearity control is obtained from the compensating circuit R_{57} and C_{55}.
6. The Frame Time Base operates in a similar manner to the Line Time Base. The valve fitted is a triode hexode $\left(\mathrm{V}_{13}\right)$ the triode section of the valve functions as a blocking oscillator producing saw tooth oscillations of frame frequency, whilst the hexode portion of the valve amplifies these saw tooth oscillations. The amplified oscillations are then fed via T_{4} to the frame scan deflector coils L_{21} and L24. Frame frequency is controlled by the potentiometer R45 (frame hold control) whilst the amplitude of the saw tooth voltages is controlled by the semi variable resistor R_{50} (frame amplitude control).
7. The electron beam in the cathode ray tube, which is liberated by the action of the tube heater in raising the temperature of the cathode and accelerated by the high voltages imposed on the anodes of the tube, produces television pictures, the light and shade of which is controlled by the vision channel output fed to the cathode ray tube modulator and the building up of which is controlled by the magnetic field induced in the deflector coil circuits by the outputs from the line and frame time bases. The general level of picture brilliancy can be adjusted by means of the potentiometer R60 (Brightness control), which varies the cathode volts on the tube. Focussing control is obtained by varying the adjustment of the potentiometer R66 (focus control), which varies the current through the coil L27 and so varies the magnetic field produced by the coil.

SOUND

I. The sound signal is picked up by the dipole aerial and fed into the control grid circuit of the first R.F. pentode in the Sound Channel V6.
2. The sound signal is amplified throughout two T.R.F. stages with band pass coupling and is then fed via a diode detector valve V8 to the sound output lead which in turn should be plugged into the pick-up sockets of an ordinary radio receiver. The gain of the first two valves in the sound channel is controlled by the potentiometer R2I (sound sensitivity control).

POWER

All power necessary for the operation of the television receiver is supplied from one mains transformer. The H.T. supply for the time base, vision and sound channels and C.R. Tube is obtained from one indirectly heated rectifier Vio, whilst the E.H.T. for the C.R. Tube is obtained from another indirectly heated rectifier V_{9}.

TECHNICAL SPECIFICATION

In this Technical Specification the path of the television signal from the aerial input terminal to the Cathode Ray tube is followed and a detailed explanation is given concerning the functions of the various units necessary for the reproduction of television pictures).

VISION CHANNEL (V1, V2, V3, V4 and V5).

In this unit three R.F. pentodes are employed in tuned R.F. stages and two diodes in a full wave rectification or detector circuit. Coupling between the first and second valve is of the "single humped " type, whilst the coupling employed in the next two stages is of the band pass type. The band width is limited to approximately $2 \frac{1}{2}$ megacycles thus enabling a high stage gain to be employed. The gain of the first two stages in this unit is controlled by applying a variable negative voltage from the potentiometer R10 (vision sensitivity control) to the suppressor grids of the first two valves. The vision signal from the aerial input terminal is fed via the aerial coupling coil LI to the control grid of the first valve. It is then amplified throughout three stages and finally it is fed to the full wave rectification or detector circuit. The D.C. output from the detector stage is then fed to the modulator of the cathode ray tube and also to the control grid circuit of the line and frame synch. separator valve (VII) in the time base.

TIME BASE (V11, V12, V13).

The time base can be considered as three separate units :-
(a) The synchronising stage which is employed to deliver synch. pulses, free from any picture or " noise" content, to the line and frame time bases.
(b) The line time base from which is derived an ample linear saw tooth current sufficient to scan the cathode ray tube screen at 10,125 pulses per second in the horizontal direction.
(c) The frame time base from which is derived an ample linear saw tooth current sufficient to scan the cathode ray tube screen at 50 pulses per second, in a vertical direction.
(a) SYNCHRONISING STAGE (V11).

The valve fitted in this stage is an R.F. pentode and its purpose is to separate the line and frame synch. pulses from the picture content and any "noise" content which may be present in the signal obtained from the vision channel. In effect it filters the line and frame synch. pulses from the signal applied to its control grid circuit and feeds these pulses to the line and frame time bases respectively, in order to synchronise the oscillator circuits with the transmitter.

The potentiometer R27 (line and frame synch. separator bias control) controls the cathode bias potential applied to the valve, the control being set so that this potential ensures that when the output from the vision channel is applied to the control grid of the valve, only the voltage change generated by the synch. pulses is allowed to take effect over the effective part of the anode current-control grid voltage characteristic curve of the valve; whilst at the same time only the voltage change generated by the synch. pulses is allowed to take effect over the effective part of the suppressor grid current-control grid voltage characteristic curve of the valve. In this way the voltages generated by the picture content of the signal and the voltages generated by any " noise" which may be present, do not increase the voltage developed across the load resistors R23 and R22 in the anode circuit of the valve and R28 and R29 in the suppressor grid circuit of the valve. Line pulses are fed via the condenser C36 to the secondary winding of the oscillatory transformer T_{1} which is in the control grid circuit of the triode portion of the valve employed in the line time base ; whilst frame pulses are fed via a condenser and resistance ($\mathrm{C}_{3} 8$ and R_{34}) to a tertiary winding of the oscillatory transformer T_{3} in the frame time base.
(b) LINE TIME BASE (V12).

In this unit, a dual purpose valve is employed, this valve being a triode tetrode. The triode section of the valve is employed in a blocking oscillator type circuit and its function is to produce a saw tooth voltage of 10,125 pulses per second. The operation of this blocking oscillator is as follows : The transformer T_{1} is part of an oscillatory circuit between the anode and the control grid of the triode portion of the valve. The oscillations take place at a much higher frequency than the fundamental saw tooth frequency generated by the whole blocking oscillator circuit. The current passing through the primary of the transformer T_{1} induces a voltage in its secondary. This voltage charges the condenser C43 and builds up a negative voltage on the control grid. As this negative voltage increases there will come a time when the voltage on the control grid is of such a value that it completely blocks the valve and allows the charge condenser C_{42} to build up a voltage. Whilst this is taking place the negative charge on the control grid is draining through resistances $\mathrm{R}_{35}, \mathrm{R}_{3} 6, \mathrm{R}_{37}$ and $\mathrm{R}_{3} 8$ and as this draining occurs, eventually the negative voltage built up on the control grid is reduced to a value where the triode section of the valve becomes conductive and allows the condenser C_{42} to discharge through the valve.

The frequency or speed of the saw tooth voltages is varied by means of the potentiometer R38 (line hold control) in the control grid circuit of the triode portion of the valve. By varying the resistance in this circuit one can control the drain of the negative charge built up on the control grid by
means of the blocking oscillator circuit, and consequently one can control the speed of the saw tooth output obtained. The blocking oscillator circuit is synchronised, as previously explained, by feeding the output from the line synch. separator circuit via the condenser C36 to the secondary winding of the oscillator transformer T_{1}. Saw tooth oscillations produced by the triode portion of the dual purpose valve fitted in the line time base are amplified by the tetrode section of the valve, and then fed via T2 to the line scan deflector coils L_{22} and L_{23}, thus producing the electro magnetic field for the horizontal scan. The amplitude of the horizontal scan is controlled by the potentiometer R3I (line amplitude control) which varies the voltage applied to the charge circuit of the blocking oscillator. A resistance capacity circuit across the secondary winding of T_{2} provides a compensation circuit to obtain a linear scan. This circuit consists of C_{55} and R_{57} (line linearity control).

(c) FRAME TIME BASE (V13).

The operation of this unit is similar to the operation of the line time basc. A dual purpose valve (VI3) is employed. This valve is a triode hexode, the operaion of the triode section being similar to the operation of the triode section of the valve fitted in the line time base. The oscillatory circuit consists of T_{3} primary and secondary, $\mathrm{C}_{4} 8, \mathrm{R}_{45}, \mathrm{R}_{47}$ and $\mathrm{R}_{4} 8$; the charge circuit consists of C_{52}, R_{51} and R_{54}, the speed of the saw tooth voltages generated being controlled by the potentiometer R_{45} (frame hold control). The saw tooth wave form generated by the blocking oscillator circuit is fed to the control grid of the hexode section of the valve, where it is amplified and then fed via transformer T_{4} to the deffector coils L21 and L24, to produce the electro magnetic field for the vertical scan. The amplitude of the vertical scan is contrclled by means of the scmi variable resistor R_{50} (frame amplitude control) in the cathode circuit of the valve and thus a control is obtained free from frequency variation.

The blocking oscillator circuit is synchronised by means of the frame synch. pulses which are fed to the tertiary winding of T_{3}.

TUBE UNIT

The pulsating D.C. output from the vision channel is fed to the modulator of the cathode ray tube. This tube is a Hivac type $\mathrm{T}_{5} \mathrm{M}$ and it is electro magnetically focussed and scanned. By varying the adjustment of the potentiometer R66 (focus control) the current through L27 (focus coil) is varied, thus altering the magnetic field around the coil. There is a gap in the magnetic circuit which surrounds the coil and this gap confines the focussing field to the correct position in thetube. The heater of the tube is energised from $\mathrm{a}^{*} 2.1$ volt winding on the mains transformer. This heater raises the temperature of the cathode in the tube and as the temperature rises a stream of electrons is liberated. This stream of electrons is accelerated by the voltages on the anodes of the tube and it also varies in intensity as the positive voltage on the modulator is varied by the output from the vision channel. The basic control of the intensity of the stream is obtained from the resistance circuit R_{59} and R6o. R6o is a variable potentiometer (brightness control). The line scanning and frame scanning of the tube, i.e. deflection of the electron beam in the horizontal and vertical directions, is obtained as explained in the notes on the line and frame time bases.

Thus we have the output from the vision channel controlling the horizontal and vertical scanning of the tube and the intensity of the electron beam, the whole combining to produce television pictures on the tube screen.

* A number of 817 Television Receivers are fitted with Mullard C.R. tubes having a 6.3 volt heater energised from the 6.3 volt winding on the mains transformer.

SOUND

SOUND CHANNEL (V6, V7 and V8).

The sound channel is built on the same chassis as the vision channel. The T.R.F. method of reception is employed, high efficiency coils and trimming condensers providing a band width of approximately 100 kcs . with a sharp 'cut off' on either side. The valves employed in the first two stages are R.F. Pentodes. The sound input signal is fed via the aerial coupling coil Li4 to the control grid of the first R.F. Pentode in the sound channel and is then amplified throughout two stages. The gain of these two stages is controlled by applying a negative voltage to the suppressor grids of the valves. This negative voltage is obtained from the potentiometer R21 (sound sensitivity control).

The anode of the second T.R.F. stage is transformer coupled to the cathode of a diode detector valve and the A.F. Output from this valve is fed via a condenser (C30) to the sound output socket.

POWER UNIT

The Power Unit supplies from one mains transformer all the power necessary for the complete operation of the television receiver. The H.T. supply for the Time Base, Vision and Sound channels and Cathode Ray Tube is obtained from one indirectly heated rectifier (VIO), whilst the E.H.T. for the 2nd anode of the tube is obtained from another indirectly heated rectifier $\left(\mathrm{V}_{9}\right)$.

The smoothing of the H.T. supply is in the negative lead; this is arranged primarily in order to obtain negative voltages for controlling the R.F. gain of the vision and sound channels.

CIRCUIT ANALYSIS． The following conditions must be observed before any voltages or currents are measured ：－ 1．＇No signal＇condition on receiver． 2．Vision and sound sensitivity controls in fuily clockwise position． 3．Line and Frame Synch．Sep．bias control in fully clockwise position． 4．Line and Frame Hold coutrols adjusted for correct Line and Frame Scan speeds． 5．Line Linearity control adjasted for correct Line Scan linearity． 6．Line and Frame Amplifude controls adjusted for correct Line and Frame Scan amplitudes． 7．Voltagea measured from chassis with a 1,000 ohms per volt meter with the exception of tho C．R．tube and anode voltage which is measured with an electrostatic voltmeter．							
$\begin{aligned} & \vec{~} \\ & \frac{1}{4} \\ & \frac{4}{4} \\ & \frac{\pi}{0} \\ & \frac{3}{3} \end{aligned}$	Com－ ponent No．	Valve	Circuit	Voltage	Current	Aspociated Components	
	86116	（Vi）R．F．Pentode Mulard EF6 clear	Anode Screen Suppressor Grid Control Grid Cathode Heater	235 volts 135 volts 2．0 volts 6.3 volts	$\begin{gathered} 7.5 \mathrm{~m} . \mathrm{a} . \\ 2.5 \mathrm{ma.a} . \\ = \\ 10,0 \mathrm{ma.a} . \end{gathered}$		The coos Fig． 2
	86116	（Vz）R．F．Pentode Mullard EF6 clear	Anode Screen Suppressor Grid Control Grid Cathode Heater	135 volts 135 volts － 1.0 volts 6.3 volts	$\begin{gathered} 7.5 \mathrm{~m} . a . \\ 2.5 \mathrm{~m} . a . \\ = \\ 10.0 \mathrm{~m} . \mathrm{a} . \end{gathered}$		
	86116	（V3）R．F．Pentode Mullard EF6 clear	Anode Screen Control Grid Cathode Heater	260 volts 260 volts 5.0 volts 6.3 volts	$9.4 \mathrm{ma.a}$ 3.1 $12.5 \mathrm{ma}.$.		∞ neror wibaser Het nor wakd letire Fig． 3
	$86 \mathrm{rr8}$	$\begin{aligned} & \left(\mathrm{V}_{4} \& \mathrm{~V}_{5}\right) \text { Diode } \\ & \text { Detector } \\ & \text { Mullard T6D clear } \end{aligned}$	Anode Cathode Heater	${ }_{6.3} \overline{\text { valts }}^{\text {v }}$	二		
	86116	（V6）R．F．Pentode Mullard EF6 clear	Anode Screen Suppressor Grid Control Grid Cathode Heater	$\begin{aligned} & 135 \text { volta } \\ & 135 \text { volts } \\ & = \\ & 1.0 \text { volts } \\ & 6.3 \text { volts } \end{aligned}$	$\begin{gathered} 7.5 \mathrm{ma}-\mathrm{a} . \\ 2.5 \mathrm{ma.a.} \\ = \\ 10.0 \mathrm{~m}-\mathrm{a} . \end{gathered}$	R12，L16，C21，Ci9． R12，Car． $\mathrm{R}_{14}, \mathrm{R}_{18}, \mathrm{R} 21, \mathrm{C}_{23}, \mathrm{C}_{26}$. $\mathrm{L}_{14}, \mathrm{Cl}_{17}$ and screened lead． Ra3．C22， L15，C20．	
	86116	（V7）R．F．Pentode Mullard EF6 clear	Anode Screen Suppressor Grid Control Grid Cathode Heater	135 volts 135 volts \qquad 2.0 volts 6.3 volts	$\begin{gathered} 7.5 \mathrm{~m} . \mathrm{a} . \\ 2.5 \mathrm{~m} . \mathrm{a} \\ = \\ 10.0 \mathrm{~m} . \mathrm{a} . \end{gathered}$	$\begin{aligned} & \mathrm{R}_{15} \text { L18, C27. } \\ & \text { R15, C12, } \\ & \text { R13, R18, R21, C26, C29. } \\ & \text { L17, C18, } \\ & \text { R16, C28. } \\ & \text { C24. } \end{aligned}$	$\begin{aligned} & V \\ & \text { TOP SIDE OF VALVE HOLDER } \\ & \text { IH RECTIFIER } \end{aligned}$
	86128	（V8）Diode Detector Mullard T6D clear	Anode Cathode Heater		－	$\begin{aligned} & \text { R19. R20, L20, C30, C31. } \\ & \text { L19, C25. } \end{aligned}$	
\＃$\frac{3}{3}$422	86055	（V9）H．V．Rectifier Mallard HVRa clear	Anode Cathode	The cathode voltage is given as the C．R．Tube znd anode voltage．	二	E．H．T．winding on mains transformer． R66，R67，R68，C56．	
	86004	（Vio）H．T．Rectifier Mullard IW3 clear	Each Anode Cathode	$\begin{aligned} & 343 \text { volts } \\ & 370 \text { volts } \\ & \text { (H.T. line) } \end{aligned}$	二	Wiring on mains transformer． R59．R60，R61，R62，R63，R64，R65，L．a5， L26，C57，C58，C59，C60．	Fig． 5
$\begin{aligned} & \text { 眔 } \\ & \text { 兑 } \end{aligned}$	86116	（Vii）R．F．Pentode Mullard EF6 clear	Anode Screen Suppressor Grid Control Grid Cathode Heater	27.5 volts 30 volts 27.5 volts 15 volts 6.3 volts	$\stackrel{-\overline{8 \mathrm{~m} . \mathrm{a}} .}{\bar{\sim}}$	$\mathrm{R}_{22}, \mathrm{R}_{33}, \mathrm{R}_{30}, \mathrm{R}_{31}, \mathrm{R}_{32}, \mathrm{C}_{34}, \mathrm{C}_{36}$ ， C_{4} ． $\mathrm{R}_{30}, \mathrm{R}_{31}, \mathrm{R}_{32}, \mathrm{R}_{23}, \mathrm{R}_{26}, \mathrm{R}_{27}, \mathrm{C}_{35}, \mathrm{C}_{4}$. R_{28} ，R39，R30，R31，R32，C37，C35，C40． Input circnit from Vision channel． $\mathrm{R}_{27} \mathrm{C}_{33}$. R24．	
	86164	（V12）Triode－Tetrode Hivac AC／T2 clear	Anode（Triode） Control Grid （Triode） Anode Screen Control Grid Cathode Heater	too volts 250 volts 230 volts 20 volts 6.3 volts	$\begin{gathered} 0.8 \mathrm{~m} . \mathrm{a} . \\ - \\ 43 \mathrm{~m} . \mathrm{a} . \\ 7.2 \mathrm{~m} . \mathrm{a} . \\ 51 \mathrm{~m} . \mathrm{a} . \\ - \end{gathered}$	R31，R39，Primary TI，C $_{34}, \mathrm{C}_{4} 6$. $\mathrm{R}_{36}, \mathrm{R}_{37}, \mathrm{R}_{3} 8, \mathrm{C}_{4} 3$. R_{40} ，Primary Tz，C45． $\mathrm{R}_{44}, \mathrm{C}_{4} 7$. R_{43}. $\mathrm{R}_{4} \mathrm{I}, \mathrm{R}_{42}, \mathrm{C}_{44}$.	zon were of wupmase 19世 brew mace reacol Fig． 6
	86117	（V13）Triode－Hexode Mullard 653／T clear	Anode（Triode） Control Grid （Triode） Anode Screen Control Grid Cathode Heater	I 50 volts aso volts 280 volts 25 volts 6.3 volts	$\begin{aligned} & 2.9 \mathrm{~m}-\mathrm{a} . \\ & 9.5 \mathrm{~m} . \mathrm{a} . \end{aligned}$	R54，primary T_{3} ．C51，C52． $\mathrm{R}_{45}, \mathrm{R}_{47}, \mathrm{R}_{4} 8, \mathrm{C}_{4} 8$ ． R5a，primary T4．C50，C53．C54． R53，C51． $\mathrm{R}_{34}, \mathrm{R}_{46}, \mathrm{R}_{49}, \mathrm{R}_{50}, \mathrm{C}_{49}$.	
云 S 8 $\frac{3}{3}$	75252	Hivac T5M	1st Anode and Anode Cathode	$\left\|\begin{array}{c} 165 \text { volts } \\ \text { max. } \\ 3,600 \text { volts } \\ 0^{\circ}-7200 \\ \text { volts } \end{array}\right\|$	$\underline{-}$	R62, R63. Mains transformer B．H．T．winding． R59，R60，R61．	roe yew of catione Fig． 7

INDUCTANCES AND TRANSFORMERS

VISION CHANNEL

TIME BASE UNIT

VISION AND SOUND CHANNELS

POSSIBLE FAULTS AND THEIR CAUSES.

The data given below covers the type of fault which may develop in the 8_{17} Vision and Sound Channels and which cannot be detected by the ordinary voltage and current analysis.

Faults
No vision output.
No vision or sound.
No sound.
High lights flat (very " contrasting " picture).
Instability on vision at max. setting of sensitivity control.
Instability on sound at max. setting of sensitivity control.

General

Weak results, no results, noisy results or microphony.

Causes

Diode output choke (Li3) disconnected, or o/c.
Faulty connection in acrial circuit.
Screened output lead to P.U. sockets on radio receiver faulty.
Vision sensitivity control advanced too far.
T6D faulty causing half wave detection (reradiated R.F. is then considerably increased).
Apart from faulty decoupling condensers or dry joints, which may cause instability, it may be present owing to a particularly high slope EF6 in V6 and/or V_{7} positions. (This is not considered a disadvantage as it is only necessary slightly to reduce the sensitivity control setting to cure the trouble).

These faults may be caused by faulty EF6 valves and should be casily located by the usual methods. However, when any or all of the valves in the sound channel are changed it will usually be necessary to retrim. This can be carried out on the A.P. sound transmission. The vision channel, having a much flatter response, is little affected by valve changing. If misalignment is suspected, retrimming of the vision channel should only be done where the correct apparatus is available.

TIME

POSSIBLE FAULTS AND THEIR CAUSES.
The data given below covers the type of fault which may develop in the 8_{17} Time Base and which cannot be detected by the ordinary voltage and current analysis.

Faults

(a) Line Scan Generator.
(i) No output.
(ii) Non linear scan.
(iii) Speed incorrect.
(iv) Low output.
(b) Frame Scan Generator.
(i) No output
(ii) Non linear scan.
(iii) Speed incorrect.
(iv) Low output
(v) Diagonal "fly-back" lines in bottom half of raster.

Causes
(a) Faulty deflector coils (L22 and/or L23).
(b) Output transformer $\left(\mathrm{T}_{2}\right) \mathrm{o} / \mathrm{c}$ or s / c.
(c) Oscillator transformer (T_{I}) o/c or s / c.
(a) Faulty output or oscillator transformer.
(b) Compensation circuit (C_{55} and R_{57}) faulty or R_{57} set incorrectly.
(a) Fualty AC/TZ.
(b) Faulty oscillator transformer.
(c) Oscillator grid condenser (C_{43}) faulty.

Decoupling condenser (C_{45} and/or C_{47}) o/c.
(a) Faulty deflector coils (L_{21} and/or L_{24}).
(b) Output transformer (T_{4}) o/c or s/c.
(c) Oscillator transformer $\left(\mathrm{T}_{3}\right) \mathrm{o} / \mathrm{c}$ or s / c.
(a) Faulty output or oscillator transformer.
(b) Bias condenser (C49) o/c.
(a) Oscillator transformer faulty.
(b) Faulty ${ }^{6}{ }^{5} 53 \mathrm{~T}$.
(c) Oscillator grid condenser ($\mathrm{C}_{4} 8$) faulty. "Bias condenser (C49) o/c.
"Fly-back" suppression circuit (C_{54} and $\mathrm{R}_{5} 6$) faulty or lead to connecting tag " E " on Power Unit disconnected.
(c) Synchronising Stage.
(i) No output.
(ii) No output to line generator
(iii) No output to frame generator.
(iv) Poor separation (i.e picture and/or "noise" content of signal affecting synchronization).
(v) Ragged vertical edge on scan.
(vi) Picture unsteady in vertical direction.
(a) Grid cap off.
(b) No H.T. to potentiometer strip ($\mathrm{R}_{25}, \mathrm{R}_{26}, \mathrm{R}_{27}, \mathrm{R}_{30}, \mathrm{R}_{31}, \mathrm{R}_{32}$) Feed condenser (C36) o/c.
Feed condenser ($\mathrm{C}_{3} 8$) o/c.
(a) Faulty EF6.,
(b) Decoupling ($\mathrm{C}_{35}, \mathrm{C}_{40}$) or filter $\left(\mathrm{C}_{34}, \mathrm{C}_{37}, \mathrm{C}_{39}\right)$ condenser o/c.
(a) Synch. separator bias control (R27) set incorrectly.
(b) Line speed control set incorrectly ($\mathrm{R}_{3} 8$).
(a) Synch. separator bias control (R27) set incorrectly.
(b) Filter circuit faulty ($\mathrm{C}_{37}, \mathrm{C}_{39}$).
(c) Frame speed control set incorrectly (R45).

POWER UNIT

Fig. 12

Fig. 13

Deflector Coil Assembly
Fig. 14

POSSIBLE FAULTS AND THEIR CAUSES

The data given below covers the type of fault which may develop in the 817 Power Unit and which cannot be detected by the ordinary voltage and current analysis.

Faults
(1) No or low E.H.T.
(2) No or low H.T.

Causes

(a) Broken down smoothing condenser ($\mathrm{C}_{5} 6$) indicated by blue glow in rectifying valve (V 9). Liable to lead to burnt out E.H.T. winding on mains transformer.
(b) Defective rectifying valve. Indicated by A.C. volts on plate but no D.C. across condenser.
(c) Disconnected or o/c E.H.T. winding. Indicated by no A.C. to plate of rectifier.
(a) Faulty rectifier (V10), indicated by A.C. volts on plate but no D.C. across condenser (C_{59}).
(b) Faulty smoothing condenser ($\mathrm{C}_{57}, \mathrm{C}_{5} 8, \mathrm{C}_{59}$), indicated by low H.T. volts, blue glow in rectifier and hum on sound.
(c) Disconnected or o/c H.T. winding, indicated by no volts between earth and one or both anodes of rectifier.
(3) Continuous As for 1 (a) or 2 (b) breakdown of rectifiers.
(4) Hum on As for 2 (b). sound.
(5) Hum on raster.
(6) Erratic Brightness Control
(7) No light on C.R. Tube screen (c) Defective tube.

TRIMMING DATA

VISION CHANNEL

The trimmers and coils in the 817 Television Receiver are accurately adjusted on special apparatus when the receiver is manufactured and no re-adjustments should be made unless :-

1. All voltages, currents, components and valves have been checked and found to be up to standard.
2. The efficiency of the receiver has been found to be below standard when compared with other standard models.
3. Accurate equipment is available for their re-adjustment.

All adjustments should be made with :-

1. Vision and sound sensitivity controls in the fully clockwise position.
*2. Line and frame hold controls adjusted for correct line and frame scan speeds. (These controls should be adjusted when the Television Receiver is receiving the television transmission or alternatively they can be adjusted with the aid of a Signal Generator such as the Pye De-Luxe Trimeasy).
${ }^{*}$ 3. Line linearity control adjusted for correct line scan linearity.
*4. Line and frame amplitude controls adjusted for correct line and frame scan amplitude.
2. Volume control on the radio receiver turned to the fully clockwise position and the wave range switch to the 'gram ' position.
3. A D.C. Volt Meter connected across the output of the vision channel (between the green lead to the Cathode Ray Tube and the chassis). This D.C. Volt Meter should have a D.C. resistance of not less than 50,000 ohms. If a Volt Meter of lower resistance is used the vision channel loading will be upset. The Volt Meter should also have a full scale deflection such that 10 volt readings can be easily obtained. An Analyser having a 1 milliamp. range can be used for this purpose. Simply connect a 50,000 ohm resistance in series with the meter ; this gives a meter with a D.C. resistance of 50,000 ohms and a full scale deflection of 50 volts.
4. An Output Meter connected in parallel with the speech coil of the loudspeaker in the radio receiver.

* See Time Base Unit instructions.
N.B. A special trimming tool such as the Pye Ivory Trimming Tool should be used for adjusting the iron cores inside the coils and the condensers of the vision channel. It is important to note that an ordinary screwdriver cannot be used for this purpose.
The Signal Generator which is to be used for trimming should be checked for frequency accuracy. The easiest method of doing this is to beat it with the signal from Alexandra Palace, but before proceeding as outlined below it is important that the generator be switched on and allowed to warm up for approximately half an hour. This is necessary in order to ensure frequency stability when the generator is operating at frequencies of the order of 45 megacycles.

Switch on a television receiver and ensure that the vision and sound transmissions are being received. Connect a length of wire (about a foot) to the ' live' side of the generator output cable, turn the attenuator to maximum and place the wire close to the vision channel. Remove the sound output lead from the television receiver to the radio receiver and connect the green vision channel output lead via a 0.1 mfd . condenser to the 'live' pick-up socket. (Do not remove the green lead from the C.R. tube connector). The earth terminal of the radio receiver should be connected to the earth terminal of the television receiver.

The generator can now be checked for frequency accuracy. Set the frequency control to the supposed 45 megacycle position and carefully adjust it ; as the correct frequency is approached a high frequency whistle will be heard in the loudspeaker and this whistle will decrease in pitch as the 45 megacycle frequency is approached ; when the generator is adjusted exactly to 45 megacycles no note should be audible, i.e. "zero beat" is obtained, but if this point is passed a note will again be heard which will increase in pitch as the generator frequency differs from the 45 megacycle Alexandra Palace transmitter frequency.

A method which differs slightly from that outlined above is to connect a pair of headphones between the pin on the C.R. tube connector to which is connected the green vision channel output lead and the chassis. The beat note will then be heard in the headphones.

The reading obtained on the generator when " zero beat" is obtained should, if different to that already given by the manufacturers of the generator, be noted and allowed for at any frequencies used when aligning the vision channel.
N.B. Before proceeding with the alignment of the vision channel the condenser must be removed. If the headphone method has been employed the headphones must of course be removed. Also remove the length of wire from the generator output cable.

The unmodulated output from the signal generator should be fed to the television receiver screened aerial connector, the live wire being connected to the centre portion of the connector, whilst the screening should be connected to the outer portion. The output should be attenuated so that the D.C. volt meter reading is always approximately 10 volts.

IT IS IMPORTANT THAT THE IMPEDANCE AT THE RECEIVER END OF THE LINE FROM THE GENERATOR TO THE RECEIVER IS APPROXIMATELY 100 OHMS. WHEN USING SIGNAL GENERATORS WHICH WHEN MEASURED AT THE ATTENUATOR HAVE AN OUTPUT IMPEDANCE OF $25-150$ OHMS, IT IS SUFFICIENT TO FEED THE OUTPUT FROM THE GENERATOR TO THE VISION CHANNEL INPUT VIA 2 FT. OF CONCENTRIC R.F. CABLE (THE TYPE OF CABLE USED AS A TRANSMISSION LINE FROM A TELEVISION AERIAL IS ADMIRABLE FOR THIS PURPOSE). THE PYE 1939 MODEL DE-LUXE TRIMEASY FALLS WITHIN THIS CATEGORY.

WHEN USING SIGNAL GENERATORS HAVING AN IMPEDANCE GREATER THAN 150 OHMS, SPECIAL CONSIDERATIONS ARE NECESSARY AND THE MANUFACTURERS OF THE GENERATOR SHOULD BE CONSULTED.

To facilitate the reading of the frequency-dial reading graphs supplied with the Pye 1939 model Trimeasy and other similar types of Signal Generators, at the high frequencies required for Television Trimming, the slope of the curve should be calculated.

To do this :-
(a) Beat the Generator output with the Vision transmission from Alexandra Palace as explained previously in these notes, observe the dial reading and note the correct 45 megacycle position on the Graph curve.
(b) Note on the Graph curve the correct 30 megacycle position.
(c) By means of the formula given below the slope of the curve can be calculated :-

Slope of curve $=\frac{\text { Dial reading for } 30 \text { megacycles }- \text { Dial reading for } 45 \text { megacycles }}{45 \text { megacycles }-30 \text { megacycles }}$
This gives the slope of the 6-17 metre curve as being approximately i.6.
That is to say for 1 megacycle variation at frequencies between 50 and 30 megacycles the large pointer on the Trimeasy dial should be moved through 1.6 large divisions or 16 small divisions.

The adjustment of the various dust iron cores and trimming condensers in the vision channel should then be carried out in the following order.
(a) Inject a signal of 45 megacycles and adjust C_{1} and the dust iron core of L_{3} and L_{4} for maximum output.
(b) Inject a signal of 44 megacycles and adjust the dust iron cores of L6 and L_{7} for maximum output. Then inject a signal of 46 megacycles and adjust the cores of L 6 and L 7 for maximum output. Finally inject a signal of 44 megacycles and adjust these cores once again for maximum output.
(c) Inject a signal of 44 megacycles and adjust the dust iron core of L9 and Lio and condenser C_{2} for maximum output. Then inject a signal of 46 megacycles and adjust C_{2} for maximum output. Finally inject once again a signal of 44 megacycles and re-adjust the dust iron core of L9 and Lio and the condenser C 2 for maximum output.
(d) Finally readjust G for maximum picture contrast when the television receiver is receiving the Alexandra Palace transmission.
N.B. No condenser other than C_{1} and no dust iron core in the vision channel must be adjusted on the Alexandra Palace transmission.
It is important that the cores and trimming condensers are adjusted in the order given above in order that the correct over all response curve is obtained.

SOUND CHANNEL

The signal Generator should be checked for correct frequency calibration at the Television Sound transmission frequency (4 I .5 megacycles). To check the generator beat it with the sound transmission reception obtained with a television receiver and adjust the frequency until " zero-beat " is obtained.

The above can be carried out in the manner outlined for checking the Vision frequency. The sound output lead between the television receiver and the radio receiver must be connected as for normal use.

The output from the generator should be fed to the aerial connector as described in the instructions concerning the vision channel. The R.F. output from the generator should be modulated at 400 cycles, to a depth of approximately 30% and it should also be attenuated so that the reading shown on the output meter connected across the speaker speech coil is always approximately 100 milliwatts.

The trimming condensers and dust iron core in the Sound Channel should be adjusted in the following order. Inject a signal of frequency 41.5 megacycles and adjust $\mathrm{Cr}_{7}, \mathrm{Ci}_{19}, \mathrm{Cr} 8$ and the dust iron core of $\mathrm{L}_{1} 8$ and $\mathrm{L}_{1} 9$ for maximum output.

TIME BASE UNIT

All adjustments to the Time Base Unit are carried out by means of potentiometers and semivariable potentiometers.

The correct method of adjusting the semi-variable potentiometers is given in the paragraphs dealing with Mechanical Data.

The effects of incorrect adjustment of these controls are given below :-

1. Line Amplitude Control (R31). Picture breadth too great or too small-control should be adjusted until breadth of picture is correct for size of mask.
2. Frame Amplitude Control (R50) Semi-Variable Potentiometer. Picture height too great or too small-adjust control until height of picture is correct for size of mask.
3. Line and Frame Synch. Separator Bias Control (R27). If this control requires adjusting the following effects will be noticed: Interference affecting the picture in the horizontal or vertical direction ; Picture unsteady and distorted in the horizontal direction, or a whitish 'ghost ' picture appearing on the left hand side of the picture. This latter effect is known as
' turn over.' Picture unsteady in the vertical direction.
IMPORTANT. BEFORE DECIDING THAT THIS CONTROL REQUIRES ADJUSTING IT IS IMPORTANT THAT THE VISION SENSITIVITY CONTROL AND THE BRIGHTNESS CONTROL ARE ADJUSTED FOR CORRECT PICTURE CONTRAST. (See 817 Instruction Book). ALSO THE LINE AND FRAME HOLD CONTROLS SHOULD BE ADJUSTED IN CONJUNGTION WITH THE SYNCH. SEPARATOR CONTROL. FOR DETAILS CONCERNING THE CORREGT ADJUSTMENT OF THE HOLD CONTROLS, PLEASE REFER TO THE 817 INSTRUCTION BOOK.

LINE LINEARITY CONTROL (SEMI-VARIABLE POTENTIOMETER).

The Line Linearity control R_{57} is mounted on a paxolin platform on the Time Base, and it will require adjusting when the following effects are noted :-

Elongation or cramping of part of the picture in the horizontal direction. This effect will always be noticed in the left hand half of the picture.

When checking the picture for correct line linearity it should be remembered that the amplitude will effect the linearity and vice versa. Therefore the amplitude and linearity controls should be adjusted in conjunction with each other so that when the amplitude is correct the linearity is also correct.

NOTE. The operation of the vision and sound sensitivity controls, the brightness control (i.e. the major control), the line and frame hold controls and the focus control is fully dealt with in the 817 Television Receiver Instruction Book.

MECHANICAL DATA

Fig. 15

WARNING. AFTER THE REGEIVER HAS BEEN SWITCHED OFF, THE LIVE TERMINAL OF THE E.H.T. SMOOTHING CONDENSER ($\mathrm{C}_{5} 6$) SHOULD BE SHORT CIRCUITED TO THE CHASSIS BY MEANS OF A SCREWDRIVER OR SIMILAR TOOL BEFORE ANY WORK IS CARRIED OUT ON THE RECEIVER. THIS IS NECESSARY BECAUSE THE CONDENSER HOLDS ITS CHARGE FOR A CONSIDERABLE TIME AFTER THE RECEIVER IS SWITCHED OFF.

REMOVING THE COMPLETE CHASSIS ASSEMBLY FROM THE CABINET.

Instructions concerning the removal of the chassis from the cabinet are tabulated below and should be carried out in the order given.

1. Disconnect the mains lead and the aerial input lead to the receiver.
2. Disconnect the sound output lead from the Television receiver to the radio recciver.
3. Remove the card back cover and the Brightness Control knob (this knob can be removed by means of a direct forward pull).
4. Lay the cabinet on one side (taking care to protect the polish with suitable padding) and remove the four chassis fixing bolts from the cabinet base.
The chassis can then be withdrawn from the cabinet.

ADJUSTING THE SEMI-VARIABLE RESISTANCE R50 (FRAME AMPLITUDE CONTROL) AND R57 (LINE LINEARITY CONTROL).

These resistances resemble an ordinary 4 watt resistance with the exception that they have a phosphor bronze wire loop slipped over them. By varying the position of the phosphor bronze wire, control of frame amplitude and line linearity is obtained. To move the slider on these controls, press the two prongs at the end of the loop and then the wire can be easily moved. Care must be taken to see that the sharp bend in the loop is always in contact with the bare portion of the resistance. When the slider is in the correct position, release the two prongs and the wire loop will slip tightly into position. Please note that the sliders on these controls are not ' live.'

TO FIT NEW VALVES.

All the EF6 valves in the vision and sound unit are screened by clip cans which can be easily pulled off their bases. In addition the valves are screened by tinned copper cylinders which form part of the chassis and cannot be removed ; therefore the valves must be carefully tapped out of their holders by inserting a screw driver or similar tool in the hole provided in the base of the valve holders.

The valves in the time base and the two rectifier valves on the power unit should be removed in the normal manner.

REMOVING THE CATHODE RAY TUBE.

i. The tube connector clipped on the base of the tube should be pulled clear.
2. Loosen the four 6 B.A. bolts securing the deflector coil assembly to the neck of the tube.
3. Disconnect the 2nd anode lead from the connector on the side of the tube.
4. Remove all rubber strapping and slide the neck of the tube through the holder in its mounting bracket and the focus coil at the same time working the deflector coil assembly and rubber ring down the neck of the tube until eventually the tube is free.
When fitting a new tube, reverse the operating procedure for removing the tube. For the correct positioning of the deflector coil assembly, rotate the assembly round the neck of the tube until the picture is the correct way up and square with the mask.
N.B. IT IS IMPORTANT THAT THE DEFLEGTOR COIL ASSEMBLY IS KEPT WELL UP AGAINST THE FLARE OF THE TUBE.

Cases may be experienced when the picture is not in the centre of the mask. To rectify this, alter the position of the focus coil by adjusting the three screws holding the back of the focus coil can. After this adjustment has been made the focus of the raster should be checked to ensure that it is correct over the entire raster. If it is not correct or if there is any reduction in brightness at the corners of the raster with the brightness control adjusted so that the raster is just plainly visible, the focus coil should be repositioned and also the focus control potentiometer may have to be readjusted. Before checking the focus remove the aerial so that no picture is received and adjust the brightness control while checking the focus so as to ensure that the focus is correct for all degrees of brightness.
N.B. Care must be taken to ensure that the correct heater voltage is applied to the C.R. tube, if a new tube is fitted. See the Tube Unit Technical Specification.

REMOVING THE TIME BASE.

1. Disconnect the four leads from the Time Base to the connection panel on the Power Unit (Make a careful note how these leads are connected so that when reconnecting these wires no mistake is made).
2. Disconnect the mauve, yellow and black leads from the Time Base to the deflector coils.
3. Take out the two screws holding the paxolin support stay to the Time Base.
4. Remove the control grid connecting clip from the Synch. Separator valve (EF6) and take out the 4 B.A. screw from the brass rod fitted to the underside of the Power Unit,
5. Remove the two 2 B.A. nuts on the fixing bolts fitted to the mains transformer.

The Time Base can now be removed from the Power Unit.

REMOVING THE VISION AND SOUND UNIT.

1. Disconnect the green lead from the unit to the tube base connector.
2. Disconnect the four leads from the unit to the connection panel on the Power Unit (Make a careful note how these leads are connected so that when reconnecting, no mistake is made).
3. Take out the two screws holding the paxolin support stay to the unit.
4. Take out the 4 B.A. screw from the brass rod fitted to the underside of the Power Unit.
5. Remove the two 2 B.A. nuts on the fixing bolts fitted to the mains transformer.

The Vision and Sound Unit can now be removed from the Power Unit.
Care should be taken, when re-assembling the units, that the small brass spacer is in position
next to the brass rod on the Power Unit.

TELEVISION AERIAL INSTALLATION

When selecting a site for the erection of a Dipole aerial it is important that the following two points should be taken into consideration :-

1. The distance from Alexandra Palace of the site where the television receiver is intended to operate and 2. The possibility of television reception being marred by interference particularly from cars, neon lights etc.
With regard to the first point, the most important thing to consider concerning the aerial erection is the height above the ground level of the centre tap of the television aerial. For installations within the Television service area (approximately 30 miles radius around the transmitter) the centre portion of the aerial should be approximately 25 ft . above ground level, whilst for installations outside the television service area, approximately i ft. of aerial height above 25 ft . is necessary for every mile beyond 30 miles. That is to say, if a television receiver is operated at a distance of 40 miles from the transmitter, the height of the acrial centre tap should be approximately 35 ft . Where a high level of interference is experienced however, it may be necessary to further increase the height of the aerial centre tap.

As the distance from the transmitter increases special considerations may become necessary, but broadly speaking the general principles given above can be applied.

With regard to the second point, a compromise should be effected between the maximum signal strength and minimum interference. That is to say the normal signal strength will be at maximum when the whole aerial erection is in a plane with a line drawn from the transmitter, but if this position coincides with the position giving maximum interference level, then the acrial assembly can be rotated slightly in order to obtain the compromise mentioned above.

Therefore in choosing a site for a television aerial the nearest main road or road carrying any appreciable amount of traffic should always be regarded as the primary source of interference, and the aerial should be erected as far away as possible from such a road.

ERECTION OF AERIALS.

The instructions given below only apply to the erection of Pye Television Aerials.
Normally the Pye television aerial can be fixed in a conveninent position to a wall by means of wall fixing brackets and a pole, but where it is desired to increase the effective height of the aerial centre tap, the acrial complete with pole can be mounted on a chimney by means of special chimney fixing pieces. In the notes below we give details concerning the method of erecting these two types of aerial installations.

(a) FIXING THE AERIAL COMPLETE WITH POLE IN A CONVENIENT POSITION TO A WALL.

For this type of aerial erection the following parts will be required in addition to the Pye Television Aerial Kit.

I Pole of convenient length.
2 Wall brackets.
$43 \mathrm{in} . \times \frac{1}{2} \mathrm{in}$. coach bolts.
4 wall plugs.
and necessary length of concentric cable, together with a quantity of lead headed nails.
To erect this type of aerial, the instructions tabulated below should be carried out in the order given.

1. Select a suitable location for the wall brackets and mark off positions for four holes to take the wall mounting plugs. The distance between the top and bottom holes should be 2 to 3 ft .
2. The holes should then be drilled in the wall by means of a $21 / 32 \mathrm{in}$. jumper bit and hammer. The holes should be made if possible through the brickwork and not through the mortar. It will be found that if the jumper bit is consistently turned whilst being struck with the hammer the bit will drive more easily through the brickwork. If the bit is struck too hard it will in all probability seize. The holes should be made just deep enough to take the wall plugs.
3. Place the wall plugs in the holes. These plugs are made with one narrow end and one wide end and they should be placed in the holes narrow end first. This is important.
4. The wall brackets should then be placed in position and secured by means of the four 3 in . by $\frac{1}{2} \mathrm{in}$. coach bolts. These bolts are screwed in the wall plugs and care must be taken to see that they are tight.
5. The aerial assembly should then be carried out according to the instructions enclosed with each television acrial kit.
6. The end of the pole should be shaped to accommodate the clamping pieces attached to the aerial cross bar.
7. Two $\frac{1}{4} \mathrm{in}$. clearance holes should be drilled in the end of the pole in order to accommodate the two bolts provided with the aerial kit for securing the aerial assembly to the pole. The correct positions for these holes can be ascertained by placing the aerial assembly temporarily in position at the end of the pole and marking off the hole locations.
8. The aerial assembly should then be secured firmly to the end of the pole and the aerial feeder lead attached to the pole by means of the lead headed nails provided.
9. The pole should then be hoisted into position and clamped to the wall bracket.
10. The feeder lead should then be secured to the brickwork by the lead headed nails.
(b) FIXING THE PYE TELEVISION AERIAL COMPLETE WITH POLE ON A CHIMNEY.

For this type of erection the following parts will be required in addition to the Pye Television Aerial kit.
${ }_{1}$ Pole of convenient length.
${ }_{1}$ Eaves bracket with insulator.
${ }_{1} 3 \mathrm{in} . \times \frac{1}{2} \mathrm{in}$. bolt and nut.
$23 \mathrm{in} . \times \frac{1}{2} \mathrm{in}$. coach bolts and wall plugs.
36 ft . Galvanised steel wire.
6 Chimney corner pieces, small.
Necessary length of concentric cable and a quantity of lead headed nails.
Instructions concerning the erection of this type of aerial are tabulated below and should be carried out in the order given.

1. First cut off two lengths of galvanised wire sufficient to go round the chimney on which it is intended to mount the aerial pole. Allow a surplus of approximately 6 inches on each length of wire to ensure that there is sufficient to pass round the chimney fittings.
2. Take one length of wire and loop one end round the wire eyelet on one of the large chimney corner pieces and secure it by means of two of the wire cleats supplied.
3. Take the wire round the chimney and loop the other end round the ring of the strainer bolt and secure it by means of two wire cleats. (This strainer bolt is part of the large chimney corner piece).
4. Mount the large chimney corner piece in position and tighten the wire round the chimney by means of the adjusting nut on the strainer bolt.
5. Take one of the smaller chimney corner pieces and slacken off just enough wire to allow this fitting to be mounted in position.
6. The same method can be adopted for fitting the two remaining small corner pieces.
7. Fit one of the pole clamps to the large chimney corner piece by means of one of the 6 in . by $\frac{1}{2} \mathrm{in}$. bolts and nut provided. The pole clamp should not be mounted in the slot on the chimney corner piece. It should be mounted on top of the projection. This is so that the bolt can be tightened sufficiently to hold the aerial pole rigidly in position.
8. Make sure that the wire fixing the chimney fittings is tight, also that the corner pieces are all in the same place.
9. The remaining chimney fittings and pole clamp can then be mounted as per the instructions given above. The distance between the two sets of chimney fittings should be approximately 3 ft .
10. After fitting the small chimney corner pieces it is advisable to insert a piece of wire in the holes provided. These will prevent the corner pieces falling if at any time the aerial is dismantled.
11. The aerial assembly should then be carried out according to the instructions given in the leaflet included with the aerial kit.
12. The end of the pole should be shaped to accommodate the aerial clamping piece and two $\frac{1}{4} \mathrm{in}$. clearance holes should be drilled in this end of the pole. The correct position for the holes should be ascertained by temporarily mounting the aerial at the end of the pole.
13. The aerial should then be placed in position and clamped firmly to the end of the pole. Then the acrial feeder lead should be secured to the pole by means of the lead headed nails provided.
14. The aerial and pole should then be hoisted in position and the pole fixed securely in the clamps.
15. The aerial feeder must be secured to the brickwork by means of the lead headed nails.
16. If an eaves bracket is required this should be mounted according to the following instructions :-
(a) Mark off the holes for taking the two wall plugs.
(b) Make the holes with a $21 / 3^{2} \mathrm{in}$. jumper bit and hammer.
(c) Insert the wall plugs in the holes (these plugs must be inserted narrow end first).
(d) Mount the eaves bracket and secure it by means of the two 3 in . by $\frac{1}{2} \mathrm{in}$. coach bolts. (These bolts must be screwed tightly into the wall plugs).
(c) Secure the insulator to the eaves bracket by means of the 3 in . by $\frac{1}{2} \mathrm{in}$. bolt and nut provided.

The additional parts required for mounting the aerial as described in (a) and (b) can be obtained
from Pye Limited, Cambridge. Prices are as follows :-
2 Wall brackets complete with

36 ft . Galvanised steel wire

6 Small chimney corner pieces
2 Large chimney corner pieces with strainer bolts and wire eyelets fir ios. od.
$26 \mathrm{in} . \times \frac{1}{2} \mathrm{in}$. Bolts and nuts \int^{2} List

Lead headed nails
List

1939 TRIMEASY SIGNAL GENERATOR

The 1939 Trimeasy is specially suitable for Television Receiver adjustments. A third R.F. socket extends the attenuator range to below 1 microvolt, the complete range covering a ratio of $1,000,000$ to 1. The output impedance is such that the Generator can be connected direct to the input of a Vision Channel via 2 ft . of ordinary screened lead as supplied with the instrument, the the R.F. socket connectors are of course entirely screened. The 10 kc. and 400 cycle modulation can be used for adjusting Line and Frame Hold controls when an A.P. transmission is not awailable.

THREE R.F. OUTPUTS.

Force-Attenuated High, calibrated in decimals of maximum and Attenuated low.

MODULATION AND A.F. OUTPUTS.

400 cycles ; 10 kc .; 150 kc .; or External Modulation. Attenuated A.F. outputs 400 and Io,000 cycles.

TELEVISION RECEIVER ADJUSTMENTS.

Television wavebands are marked on the calibrated charts.

WAVE RANGES.

From 50 mcs to 100 kcs . (6-3,000 metres) in five ranges selected by switch. Fundamentals are used down to 25 mcs .

CLOCK FACE DIAL.

Effective scale length 300 ins. (5,000 divisions) for the complete range. I megacycle on the Television band is represented by approximately $1 \frac{1}{3}$ ins. of scale lengths so that very accurate adjustments can be obtained.

HAND CALIBRATIONS.

Each Trimeasy is individually calibrated giving it the acruracy of a laboratory test instrument.

FREQUENCY STABILITY.

Within 1% for a 30% change in H.T. voltage. Stability against-attenuator setting better than I cycle per second for attenuator range

BATTERY SUPPLY.

2 volt unspillable accumulator and three standard 9 volt batteries.

DUMMY AERIALS.

The instrument is supplied with three entirely screened leads, and dummy aerials designed to the standards approved by the R.M.A.

Price 9 guineas (net) or Hire Purchase.

IVORY TRIMMING TOOLS

It is essential to use an entirely insulated trimming tool when adjusting dust core inductances as used in Pye Television receivers. In addition the advantages of such a tool will be readily appreciated when trimming any R.F. circuits.

Real Ivory has been chosen for the insulated blades of the Pye Ivory Trimming Tools as it was found to be far superior to other natural and synthetic materials.

Four blades are supplied, two of Ivory and two of Silver Steel. The blades which are easily interchangeable fit into the insulated handle by a direct thrust.

Price $3 / 8$ net carriage paid.

