 d'un scialytique pour la retransmission d'images chirurgicales. La visée s'effectue à travers un miroir incliné à 45°.

La télévision en circuit fermé n'est pas tributaire des impératifs qui doivent être respectés dans les images destinées à une large diffusion par voie hertzienne. Les récepteurs sont en petit nombre et répondent à une fonction déterminée, ce qui n'impose pas la compatibilité du système choisi avec ceux qui sont utilisés par ailleurs pour la retransmission d'images en noir et blanc. La transmission des images se faisant par câble coaxial ou par faisceau hertzien spécialisé, la largeur de bande occupée par le signal vidéo peut être supérieure à celle qui lui est réservée en télévision radiodiffusée, et certains signaux de synchronisme (synchronisation de l'analyse séquentielle) peuvent être transmis séparément, ou asservis au secteur électrique. En revanche, il est souhaitable que l'image obtenue puisse être projetée sur grand écran, par exemple à l'aide d'un projecteur de type "Eidophore», ce qui exclut l'emploi des tubes cathodiques trichromes actuellement réalisés, qui sont impropres à cet usage. Enfin, le système employé doit être simple, fiable et d'un maniement facile, afin de ne pas nécessiter l'intervention d'un spécialiste pour sa mise en œuvre.

COMPOSITION DE L'EQUIPEMENT THV 170

Un circuit fermé de télévision en couleurs THV 170 destiné à l'enseignement (fig. 1) comprend généralement

- une ou plusieurs caméras THV 171, un coffret de commande THV i 75 pour chaque caméra, un générateur de synchronisation THV 178, un oscilloscope de contrôle THV 450, un récepteur de contrôle à tube de 18 cm THV 215 , qui peuvent être groupés dans une baie de contrôle, un projecteur "Eidophore» ou des récepteurs à vision directe.

Les interconnexions s'effectuent à l'aide de câbles multiconducteurs spéciaux dont la longueur peut atteindre couramment 300 m . Lorsque la distance entre la caméra et le récepteur excède 100 à 150 m , il est possible de placer un correcteur vidéo en tête ou en bout du câble coaxial de liaison vidéo, afin de compenser intégralement les pertes jusqu'à une distance de 600 m .

L'ANALYSE SEQUENTIELLE

L'étude des mécanismes sensoriels de perception de la couleur montre que, si l'on présente successivement à l'œil trois images monochromes correspondant à des couleurs primaires contenues dans la scène à retransmettre et convenablement choisies, une synthèse additive de ces trois composantes chromatiques s'effectue au niveau de la rétine, pour peu que la cadence de transmission des images soit suffisamment élevée.

Les couleurs primaires utilisées par l'équipement THV i 70 sont le vert, le rouge et le bleu. Des filtres correspondant à ces
trois couleurs défilent en synchronisme devant le tube de prise de vues de la caméra et devant l'écran du tube cathodique de réception ou la fenêtre de projection de 1'Eidophore, de telle sorte que seuls les rayonnements rouges, puis bleus, puis verts provenant de l'objet soient retransmis successivement à l'œil de l'observateur. En noir et blanc, le nombre d'images complètes transmises par seconde doit être de 25, afin que l'œil puisse les observer sans fatigue. Lorsque l'analyse séquentielle des couleurs est utilisée, il faut donc transmettre 25 images rouges, 25 images bleues et 25 images vertes, soit 75 images monochromes par seconde. La persistance rétinienne étant grande devant la durée de chaque image monochrome, il y a synthèse additive des trois rayonnements colorés reçus successivement, et reproduction fidèle des couleurs de la scène télévisée. En fait, on utilise comme en noir et blanc - et pour les mêmes raisons - la décomposition de chaque image en deux trames entrelacées, ce qui conduit à transmettre par seconde ${ }^{1} 50$ trames monochromes qui se succèdent dans l'ordre rouge, bleu, vert pour former 25 images colorées complètes.

Pratiquement, l'analyse séquentielle et la restitution des couleurs sont effectuées à l'aide de disques portant 12 filtres successivement rouge, bleu et vert, entraînés par des moteurs synchrones à la vitesse de 750 tours par minute. La mise en phase des disques porte-filtres de la caméra et du récepteur est réalisée par accrochage au réseau électrique des moteurs d'entraînement. Cette mise en phase est assurée pour 1a caméra à l'aide d'un moteur auxiliaire télécommandé depuis le coffret de commande, et pour le récepteur de contrôle ou le projecteur Eidophore par rotation manuelle du stator du moteur d'entrainement.

La télévision utilitaire en circuit fermé s'est remarquablement développée depuis quelques années, et les installations de télévision en noir et blanc qui fonctionnent dans de nombreuses écoles, lycées et facultés ont montré qu'elle est l'un des plus précieux auxiliaires de l'enseignement par les méthodes audio-visuelles. Cependant, si la retransmission de cours magistraux s'accommode fort bien d'une image non colorée, il n'en va pas de même pour certaines expériences de labo-
ratoire, où la couleur traduit des phénomènes physiques ou chimiques, et, "a fortiori », pour la retransmission des images saisies en salle d'opération, pendant une intervention chirurgicale.

L'introduction de la couleur dans les circuits fermés de télévision est une nécessité chaque fois que les informations de chrominance sont indispensables pour conférer à l'image sa pleine valeur pédagogique, ce qui est particulièrement le cas de l'enseignement médico-chi-
rurgical, et de la plupart des disciplines scientifiques.

Plusieurs systèmes existent à I'heure actuelle pour la radiodiffusion d'images de télévision en couleur. Ce sont le N.T.S.C., le PAL, et surtout le système français SECAM, dont les qualités rallient les suffrages de nombreux spécialistes, tant en Europe que dans les pays de l'Est. Cependant, ce sont des critères différents qui ont présidé au choix du procédé d'analyse utilisé par l'équipement THV 170.

en circuit fermé

 COUIEURSDE
THOMSON -TÉLÉ- INDUSTRIE

LA CAMERA THV 171

Le tube analyseur utilisé est un imageorthicon de 3 pouces, dont la température est maintenue constante par une circulation d'air forcé et réchauffé commandée par un thermostat. Avec un tube 7629 et un objectif ouvert à $\mathrm{F} / 3$, il est possible d'effectuer des prises de vues de bonne qualité sous un éclairement incident du sujet aussi faible que 50 lux.
Les circuits électroniques contenus dans la caméra (fig. 2) sont :

- Le circuit de balayage lignes, équipé de 4 tubes électroniques $\left(6 \mathrm{AL}_{5}, 12 \mathrm{AU} 7\right.$,

Fig. 1. - Schéma synoptique d'un circuit de télévision en couleurs comprenant deux caméras et un projecteur sur grand écran «Eidophore».

Fig. 2. - Schéma simplifié_d'une caméra THV 171. Les circuits de sécurité et de réchauffage du tube image-orthicon n'ont pas été représentés.

Caméra THV 171. On aperçoit le circuit de balayage lignes au centre, et les mécanismes de télécommande de l'objectif et d'entraînement du disque porte-filtre.

EL 36, EY 88) et groupés sur un petit châssis amovible.

- Le préamplificateur vidéo à 4 étages, à large bande passante (15 MHz à 1 dB), entièrement transistorisé.
- La plaquette de sécurité qui coupe automatiquement l'alimentation H.T. (1250 V) du tube analyseur en cas de défaillance des circuits de balayage.
- Un générateur de signaux sinusoïdaux en quadrature qui sont appliqués à 1 ' "orbiteur $»$, bobine placée à l'avant du tube analyseur et qui crée un champ tournant à la vitesse approximative de itr $/ \mathrm{mn}$. Il en résulte un léger déplacement permanent de l'image autour du centre de la surface sensible, ce qui évite le marquage de celle-ci par les images fixes.
- Les circuits d'alimentation fournissant les basses tensions continues nécessaires au fonctionnement des transistors, la tension de i 250 V pour le tube analyseur, les tensions calibrées pour ses diverses électrodes et le courant régulé de focalisation.

Tous ces circuits, sauf ceux de balayage lignes, utilisent uniquement des transistors et sont montés sur des plaquettes enfichables à câblage imprimé. En cas de défaillance de l'un de ces ensembles, le remplacement de la plaquette correspondante peut se faire instantanément, ce qui facilite la maintenance.

L'angle d'ouverture de chaque série de filtres de même couleur est réglable, et un filtre additionnel, neutre ou coloré,
peut être interposé sur le trajet optique entre le disque porte-filtres tournant et la surface sensible du tube analyseur. La plupart des objectifs de cinéma professionnel 35 mm peuvent être utilisés par la caméra THV 171, et en particulier les objectifs à focale variable. Les objectifs couramment utilisés sont les "Zoom" (50 à 200 mm de focale, ouverture $\mathrm{F} / 3,35$ à $350 \mathrm{~mm}, \mathrm{~F} / 3,5$, ou $100-400 \mathrm{~mm}, \mathrm{~F} / 5,6$) qui peuvent être entièrement télécommandés depuis le coffret de commande. Il est à noter que cette disposition est particulièrement intéressante lorsque la caméra est montée sur le bras d'un scialytique pour la retransmission d'images chirurgicales.

LE COFFRET DE COMMANDE THV 175

La partie électronique du coffret de commande se compose d'un châssis d'alimentation destiné à fournir les tensions alternatives et continues nécessaires au fonctionuement des circuits de la caméra et de ceux du coffret, et de sept plaquettes enfichables à câblage imprimé. On y trouve successivement

- L'amplificateur vidéo (fig. 3) qui reçoit le signal fourni par la caméra, les signaux de base élaborés par le générateur de synchronisation, et restitue un signal vidéo complet sur deux sorties coaxiales indépendantes
- Le commutateur vidéo, qui délivre trois signaux rectangulaires, de durée égale à celle d'un trame, nécessaires au fonctionnement des trois voies de réglage de gain des composantes de couleur.
- Les circuits de balayage vertical du tube analyseur (fig. 4).

Fig. 3. - Schéma simplifié de l'amplificateur vidéo, des circuits de commande de gain et du commutateur de commande contenus dans le coffret de commande.

- Un comparateur de phase, qui fournit une tension continue de correction destinée à asservir la fréquence du balayage lignes produit dans la caméra au signal de suppression lignes délivré par le générateur de synchronisation.
- Le circuit correcteur des taches produites par le tube analyseur. Les signaux de correction sont mélangés au signal vidéo provenant de la caméra.
- Une alimentation régulée - 18 et +10 V .
- Le circuit de régulation de la haute tension de 220 V .
L'amplificateur vidéo comporte un étage mélangeur qui reçoit la modulation vidéo provenant du préamplificateur contenu dans la caméra et le signal de correction de taches. Il est suivi par un dispositif de commutation comportant trois potentiomètres, destinés à régler le gain correspondant à chaque couleur primaire, et les diodes de commutation qui reçoivent sur leur cathode les impulsions à fréquence de trame délivrées par la plaquette "Commutation vidéo $\%$. Un relais permet de couper les trames vertes et bleues pour la mise en phase des disques d'analyse séquentielle.
Le correcteur d'ouverture comporte trois transistors AF 102 et précède les étages amplificateurs équipés de transistors AF 114 et AF 115 . L'introduction des signaux de synchronisation et de suppression trame et ligne est assurée par les étages de sortie.

La restitution de la composante continue est obtenue par un dispositif de "clamping " auquel sont appliquées les impulsions à fréquence de lignes prélevées sur le transformateur de balayage lignes. Chaque étage de sortie est constitué par deux transistors en parallèle, dont l'alimentation est régulée.

LE GENERATEUR DE SYNCHRONISATION THV 178

Le générateur de synchronisation fournit les signaux de base nécessaires au fonctionnement du caisson de contrôle : suppression de trame et de ligne, synchronisation mélangée (ligne, trame et image) et des impulsions à cadence de trame et d'image.

Tous ces signaux sont fournis au niveau de $I \mathrm{~V}$ crête à crête sur une impédance de 75Ω, polarité positive. Le générateur est constitué par un maître oscillateur asservi à la fréquence du secteur, suivi d'une chaîne de diviseurs de fréquence formée de 3 compteurs en anneau à 7,9 et 13 éléments attaqués en parallèle (fig. 5).

Chaque anneau effectue une division grâce à des tores magnétiques qui présentent un cycle d'hystérésis rectangulaire. Chacun des tores peut prendre deux états magnétiques permanents (que l'on appellera o et r), et leur couplage est effectué de proche en proche par des enroulements latéraux disposés de telle sorte que tout basculement d'un tore de l'état i à l'état o provoque la naissance d'un courant qui fait basculer le suivant de l'état o à l'état I .

Les diodes D_{1}, D_{3}, D_{5}, etc., sont bloquées par une impulsion distribuée en même temps que celle de déclenchement.

Fig. 4. - Schéma simplifié des circuits de balayage vertical du tube image-orthicon, du comparateur de phase, destiné à l'asservissement du balayage lignes produit par la caméra, et du système de correction de taches.

Fig. 5. - Schéma de l'anneau de comptage par 7 et du détecteur de coīncidence utilisé pour la division de fréquence lignes.

Le basculement d'un tore de l'état o à l'état I est donc provoqué par la charge accumulée par les condensateurs C_{1}, C_{2}, C_{3}, etc., lors du basculement du tore précédent. Cette disposition a pour but d'éviter le basculement immédiat des tores suivants. D'autre part, les diodes $\mathrm{D}_{2}, \mathrm{D}_{4}$, D_{6}, etc., empêchent le passage de l'état o à l'état I de se répercuter de proche en proche. Un dispositif à coïncidence constitué par un ensemble de trois diodes prélève des impulsions sur les trois anneaux toutes les 525 lignes. L'impulsion résultante sert à déclencher l'oscillateur bloqué de trame à 150 Hz . Le signal de suppression
de trame est calibré à 53 demi-lignes par un nouveau prélèvement sur les anneaux de comptage. A chaque trame, les compteurs sont remis à 0 , afin d'éviter les erreurs de comptage qui seraient provoquées par l'introduction accidentelle d'une impulsion parasite dans un anneau. Seul, le premier tore de chaque anneau est confirmé dans l'état 1 , afin de servir d'origine au processus de comptage suivant.

Ies signaux de synchronisation et de suppression lignes sont fournis par un multivibrateur piloté par le maître oscillateur, et suivi de circuits de mise en forme des impulsions. La synchronisation trame

Projecteur de télévision en couleurs "Eidophore".
et image est obtenue à partir des signaux délivrés par l'oscillateur bloqué de trame à 150 Hz , et d'une impulsion à 50 Hz élaborée par un «tri-multivibrateur».

L'ensemble des impulsions est mélangé
de façon à fournir un signal de synchronisation complet destiné à la caméra et aux récepteurs, tandis que les impulsions à ${ }^{1} 50 \mathrm{~Hz}$ sont dirigées vers le circuit de commande de gain placé dans le coffret de commande.

L'OSCILLOSCOPE DE CONTROLE THV 450

L'oscilloscope (fig. 6) est normalement juxtaposé au générateur de synchronisation. Il possède une base de temps synchronisée soit par les signaux de suppression ligne, soit à partir de l'impulsion à 50 Hz , ce qui offre la possibilité d'examiner trois lignes, ou trois trames complètes pour ajuster le gain correspondant à chaque couleur. Un inverseur permet de substituer au signal vidéo une tension alternative calibrée à I V crête à crête, aux fins d'étalonnage du gain de l'amplificateur vidéofréquence composé de deux tubes E 188 CC . L'alimentation haute tension des amplificateurs verticaux, horizontaux et de la base de temps est stabilisée par un circuit entièrement transistorisé, tandis que la T.H.T. délivrée au tube cathodique de 10 cm l'est par un tube EL 81 F.

LA RECEPTION DES IMAGES

Le récepteur de contrôle

Ce récepteur convient aussi bien au contrôle de l'image qu'à la réception par un petit groupe de 3 ou 4 observateurs. Il est équipé d'un tube cathodique de 18 cm à haute luminosité, devant lequel un
disque porte-filtres tourne à la vitesse de $750 \mathrm{tr} / \mathrm{mn}$, en synchronisme parfait avec celui de la caméra. L'image, très contrastée et lumineuse, est portée au format apparent de $20 \times 15 \mathrm{~cm}$ par une loupe dont le grossissement est de l'ordre de 1,3 .

Les circuits électroniques de ce récepteur ne sont guère différents de ceux d'un récepteur vidéo pour la télévision en noir et blanc, exception faite des circuits de balayage, le nombre de trames étant porté à 150 par image. Il fonctionne à partir d'un signal vidéo complet de I V crête à crête, et il est en principe juxtaposé au coffret de commande de la caméra afin de permettre un contrôle permanent de la qualité de l'image.

Récepteurs à vision directe

Lorsque l'image doit être observée par un plus grand nombre de personnes, elle peut être reproduite par un tube cathodique trichrome de grandes dimensions. On sait que ce type de tube (réalisé par R.C.A.) comporte trois canons à électrons dont les faisceaux ne peuvent respectivement atteindre que l'une des poudres fluorescentes disposées en mosaïque sur la face interne de l'écran, à travers un masque judicieusement disposé. Pour utiliser un tel tube à la reproduction d'images couleurs obtenues par le procédé séquentiel, il suffira donc de commander les cathodes des trois canons électroniques à travers un système de commutation tel que le signal vidéo ne soit appliqué qu'au canon correspondant à la couleur de la trame en cours d'analyse.

Fig. 6. - Schéma simplifié de l'oscilloscope de contrôle.

On constate d'ailleurs que, si l'on utilise un tel tube cathodique, la synthèse additive des trois couleurs primaires s'effectue sur l'écran par juxtaposition des points colorés, comme cela se produit dans les procédés de transmission simultanés pour lesquels ce type de tube a été conçu. Il n'en résulte aucune perte sensible de luminosité, et l'image reste en tous points excellente.

La projection sur grand écran

Plusieurs procédés peuvent être envisagés pour la projection des images couleur sur grand écran. Par exemple, il est possible d'utiliser trois tubes cathodiques à haute luminosité, munis chacun d'un filtre ou d'une conche luminescente colorée et consacrés à la reproduction de l'une des trames monochromes, dont les images viennent ensuite se superposer sur un écran de projection. La réalisation d'un tel dispositif se heurte malheureusement à de graves difficultés : les dispositifs optiques de projection et le système de cadrage des images monochromes produites par les trois tubes s'avèrent extrêmement délicats et con̂teux si l'on veut obtenir une image colorée de bonne qualité. D'autre part, la luminosité de l'image obtenue est médiocre, et ce système mis au point par C.B.S. et R.C.A., a été presque complètement abandonné. Un autre système de projection, dérivant d'un procédé fondamentalement différent, se prête fort bien à la reproduction d'images en couleur : il s'agit de l'Eidophore, inventé par le Pr Fritz Fischer, docteur ès sciences et directeur de la section de recherches industrielles de l'École Polytechnique Fédérale de Zurich, et réalisé industriellement par la Société suisse Gretag.
Le principe de fonctionnement de l'Eidophore (I) est le suivant (fig. 7) : le faisceau électronique issu d'un canon à électrons, dévié comme dans un tube cathodique normal, tombe sur un miroir métallique concave recouvert d'une mince couche d'huile uniformément répartie. Les charges négatives déposées à la surface de ce film isolant sont attirées par le miroir métallique, porté à un potentiel convenable, et provoquent en chaque point une déformation de la couche d'huile proportionnelle à la densité du faisceau électronique. Les déformations de cette couche se conservent jusqu'à ce que les charges se soient écoulées à travers l'huile dont la conductivité est choisie de telle sorte que les déformations qu'elle a subies aient disparu au bout d'un temps correspondant à la durée d'une trame. L'empiétement d'une image sur la suivante est ainsi évité. Par ailleurs, le miroir concave renvoie vers une série de lames réféchissantes parallèles le faisceau lumineux issu d'une lampe de projection au xénon. L'agencement du système est tel que, lorsque la couche d'huile qui couvre le miroir n'est pas déformée, la totalité de la lumière est renvoyée vers la source par les lames réfléchissantes. Au contraire, si la couche d'huile est soumise à un bombardement électronique, son épaisseur varie, les rayons
(1) Cf. "Télévision» n° 107.

Fig. 7. - Schéma de principe du projecteur «Eidophore » : 1: Source lumineuse (lampe au xénon); 2 : Condenseur; 3: Fenêtre de projection; 4 : Lentille; 5 : Groupe de barres réfléchissantes; 6 : Miroir concave; 7:Couche huileuse ("Eidophore» ou porteur d'images); 8 : Objectif ou lentille de projection; $\mathbf{9}$: Écran; 10 : Rayon électronique ou cathodique; 11 : Canon électronique ou tube cathodique; 12 : Chambre à vide; 13 : Fermeture étanche (plaque de verre).
lumineux sont déviés, traversent le réseau de lames et sont projetés sur l'écran par l'intermédiaire d'un objectif. La quantité de lumière qui traverse le système est alors proportionnelle à la densité du faisceau
obtenue peut être observée dans une salle de spectacle ou un amphithéâtre de grandes dimensions. Le projecteur, de taille comparable à celle d'un appareil cinématographique, peut être installé dans les mêmes

CARACTERISTIQUES VIDEO	
Nombre d'images complètes par seconde : 25 , (soit 25 images rouges, 25 images bleues, 25 images vertes).	Sortie vidéo : I V crête à crête sur 75Ω, polarité positive.
Nombre de trames par seconde : 150, (soit 2 trames entrelacées d'ordre $2 / 1$ par image monochrome).	Ordre de succession des filtres «Wratten » d'analyse : Rouge (N° 25), Bleu ($\mathrm{N}^{\circ} 651$), Vert ($\mathrm{N}^{\circ} 410$).
Nombre de lignes 'par image monochrome : 525.	Notons que le standard d'analyse peut être porté à 30 images/seconde,
Fréquence de balayage lignes: 39375 Hz .	441 lignes, pour le fonctionnement sur
Bande passante : 15 MHz à 1 dB .	(U.S.A., etc.).

électronique en chaque point, c'est-à-dire à l'amplitude du signal vidéo. Le faisceau électronique module donc le flux lumineux de la lampe de projection au xénon et la puissance de celle-ci peut être aussi élevée qu'il est nécessaire pour obtenir une image lumineuse sur un écran de 15 à $20 \mathrm{~m}^{2}$. Des lampes de $2,5 \mathrm{~kW}$ sont couramment utilisées, et fournissent des images incomparablement plus brillantes que celles qui peuvent être obtenues avec des tubes cathodiques de projection. De plus, l'inconvénient des très hautes tensions nécessaires à l'alimentation de ces tubes est écarté, ainsi que le danger des rayons X qui pourraient y prendre naissance.

L'adaptation d'un tel projecteur à la reproduction d'images couleur est immédiate. Il suffit, en effet, de placer devant 1'objectif de projection un disque tournant de petit diamètre identique à celui de la caméra. La luminosité du projecteur étant élevée, l'absorption de lumière due aux filtres colorés n'est pas gênante, et l'image
conditions, ce qui est le cas, par exemple, au grand amphithéâtre de la Faculté de Médecine de Paris, où un tel équipement fonctionne depuis plusieurs années.

En conclusion, si la télévision en couleurs destinée au grand public exige encore actuellement des équipements complexes, coûteux et délicats, dont bien peu sont en service aujourd'hui, la télévision en couleurs à usage pédagogique, scientifique ou industriel est d'ores et déjà un instrument sûr, de maniement et d'installation aisés, qui ne met en cause que des techniques éprouvées. Il est donc certain que, dans les années à venir, nous assisterons à une rapide multiplication de ces installations qui constituent en particulier un précieux auxiliaire de l'enseignement.
J. OUDIN

Cie. Fse. Thomson-Houston

